
Online Appendix for
How to Cautiously Uncover the ‘Black Box’ of

Machine Learning Models for Legislative Scholars

Soren Jordan∗

Hannah L. Paul†

Andrew Q. Philips‡

Contents
1 What are Machine Learning models? 2

1.1 How does a Machine Learning model estimate a model? . . . . . . . . . . . . . . 2
1.2 How does a Machine Learning model make predictions? . . . . . . . . . . . . . . 2

2 How do I estimate and interpret a Machine Learning model in R? 3
2.1 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Global interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Using Machine Learning with fixed effects . . . . . . . . . . . . . . . . . 6

2.2 Graphical interpretations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Variable Importance Plots . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Partial Dependence Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Individual Conditional Expectation Plots . . . . . . . . . . . . . . . . . . 12

∗sorenjordanpols@gmail.com. Associate Professor, Auburn University.
†hannah.paul@colorado.eduu. Assistant Professor, University of Missouri.
‡andrew.philips@colorado.edu. Assistant Professor, University of Colorado Boulder.

mailto:sorenjordanpols@gmail.com
mailto:hannah.paul@colorado.edu
mailto:andrew.philips@colorado.edu


1 What are Machine Learning models?

1.1 How does a Machine Learning model estimate a model?
The actual mechanics of Random Forest models have been well and accessibly summarized in
greater detail elsewhere (Hastie, Tibshirani and Friedman 2013; Muchlinski et al. 2016; Mont-
gomery and Olivella 2018; Molnar 2020), but we offer a brief description here. First, given a set
of k predictors, xi, the algorithm selects a “cut-point”—a value of one of the predictors that par-
titions the data into two regions. Within each region, a single prediction is made. The algorithm
then proceeds to find the next split in a region, makes a prediction, finds the next split, and so on.
The algorithm will continue to create these splits (commonly called nodes) until some stopping
criterion is satisfied, such as a minimum number of observations left in a region.

While the process above describes the construction of a single tree, known as a classification and
regression tree (CART), Random Forests innovate on a single tree—which tends to overfit the
data—in two major ways. First, by creating B bootstrap samples, on which a tree is grown on
each sample, thousands of trees can be created. Thus, instead of making a single prediction from
a single tree, “ensemble” predictions are made by averaging over all trees (hence the “Forest” in
Random Forest). Second, by forcing the algorithm to choose from a random subset of predictors
at each node, trees end up becoming decorrelated from one another. Perhaps counterintuitively,
this actually increases predictive ability, since again we are averaging over all trees (Hastie, Tib-
shirani and Friedman 2013); while a single tree may be a bad predictor, the average prediction
should be very accurate.

The number of trees, stopping criterion, and number of subset predictors to choose at each node
are “hyperparameters” typically chosen through cross-validation in order to avoid any subjec-
tive user-specific decisions. Crucial hyperparameters to select are the number of trees to grow,
the number of random predictors to force the algorithm to choose from at each node (“m-try”),
and the minimum number of observations contained in the terminal nodes. We recommend the
standard approach of a cross-validation procedure to select these hyperparameters (e.g., across
possible combinations of the number of trees, terminal node size, and m-try, select the combina-
tion that produces the lowest mean squared error, across all trees, when out-of-bag observations
are fed through). We detail how to establish these hyperparameters below.

1.2 How does a Machine Learning model make predictions?
Since they do not produce parameter estimates, tree-based models are often critiqued as “black-
box” approaches. The model returns predictions, but these are generated by relatively obscured
means and might be unsatisfying if we are asking classic questions like “what is the effect of a
predictor on an outcome of interest?” (especially if we are accustomed to seeing tables of para-
metric estimates). Even when evaluating the predictions, we might still have residual questions
like “why did a particular observation get predicted as it did”? Such questions are of key impor-
tance to analysts, yet they are difficult to answer with a machine learning model.

2



This is why tools of interpretation, in particular graphical approaches, are so important. As Mol-
nar (2020, p. 20, bold in the original) puts it, “. . . for certain problems or tasks it is not enough
to get the prediction (the what). The model must also explain how it came to the prediction (the
why).” Not only has a growing literature grappled with better understanding machine learning
models for the context of explanation and even causation (Kim, Khanna and Koyejo 2016; Doshi-
Velez and Kim 2017; Zhao and Hastie 2019), a substantial amount of recent work has focused on
doing so graphically (Friedman 2001; Goldstein et al. 2015; Apley and Zhu 2016; Ribeiro, Singh
and Guestrin 2016). It is exactly these graphical tools that we recommend as methods of unpack-
ing the “black box.”

A common method of generating and validating the predictions used in graphical interpretations
is to rely on the out-of-bag predictions (described in the main text), a form of out-of-sample pre-
diction. A second method is to use another “holdout” dataset, often called test data, to make a
final prediction (typically, to compare across a class of models) (Hastie, Tibshirani and Friedman
2013). Note that test data should only be used after model selection and diagnostics are complete.
Still another way of making predictions uses cross-validation, which is somewhat similar to boot-
strapping; for an example of this in political science, see Muchlinski et al. (2016).

2 How do I estimate and interpret a Machine Learning model
in R?

2.1 Model estimation
2.1.1 Hyperparameters

First, we can establish a series of combinations of hyperparameters to use in model estimation.
This can be handled through R’s expand.grid() function. Generally, we define a function,
makeHyper, that makes hyperparameters for all combinations of interest:

makeHyper <- function(min.mtry, max.mtry, mtry.increment,

min.node, max.node, node.increment,

min.tree, max.tree, tree.increment) {

combinations <- expand.grid(mtry = seq(min.mtry, max.mtry, mtry.increment),

node.size = seq(min.node, max.node, node.increment),

tree.size = seq(min.tree, max.tree, tree.increment),

OOB.RMSE = NA)

combinations$comb <- 1:dim(combinations)[1]

combinations

}

makeHyper will return a grid of combinations for us to search over to see which combination re-
turns the best initial fit. It takes three dimensions of arguments: mtry, which is the number to try
at each node, node, which is the number of observations within a terminal node, and tree, which
is the number of trees to grow. Be careful with values of mtry.increment, node.increment,
and tree.increment: low values will lead to really dense grids of hyperparameters to search

3



over, which could be extraordinarily computationally intensive. We recommend incrementing by
more than 1.

Once the potential hyperparameters are established, we can then loop over the grid of combi-
nations. For each combination we estimate a Random Forest model using ranger(). For each
estimated model, we store the prediction error for that combination. Our goal is to find the hyper-
parameter combination with the minimum prediction error. Since every tree is grown on a boot-
strapped sample, we can use the observations that were not randomly selected in a given boot-
strap as a holdout sample (the “out-of-bag” sample) to help select hyperparameters. Across every
combination of hyperparameters, we calculated the average mean squared error obtained by using
out-of-bag observations to feed through each respective tree. The hyperparameter combination
with the lowest mean squared error is the optimal combination to use.

Machine learning models are easiest to estimate in R by defining a dataframe that contains only
the dependent variable and relevant independent variables (without any other variables that are
not going to be used in model estimation). For instance, if we have a large dataset with many
variables, data, we could create a smaller dataset, data.small, through code like

data.small <- data[,names(data) %in% c("[name1]", "[name2]", ...)]

where we would replace name1 and name2 with the names of the dependent and all independent
variables we want in our model. From there, if we had already created a dimension of hyperpa-
rameter combinations model.combinations using the makeHyper function above, we could
loop over them with

for(i in 1:nrow(model.combinations)) {

the.model <- ranger(formula = y ~ .,

data = data.small,

num.trees = model.combinations$tree.size[i],

mtry = model.combinations$mtry[i],

min.node.size = model.combinations$node.size[i])

model.combinations$OOB.RMSE[i] <- sqrt(the.model$prediction.error)

}

This loops over all combinations of hyperparameters in model.combinations, estimates the
Random Forest model of y on all the other variables in data.small, and saves the prediction
error for each combination in model.combinations$OOB.RMSE. Once this is done, we could
isolate the hyperparameters with the lowest prediction error by using

model.combinations[which(model.combinations$OOB.RMSE ==

min(model.combinations$OOB.RMSE)),]

If we wanted a way to isolate the row number (which would make it easier to pass the combina-
tion to the full model estimation function), we could use the column comb of the hyperparame-
ters.

4



model.combinations[which(model.combinations$OOB.RMSE ==

min(model.combinations$OOB.RMSE)), "comb"]

To then fit the model, we’d just use the same dataset and pull the hyperparameters from the grid
search. Assuming the same object names from above, we would first isolate the best set of hyper-
parameters, best, and then pass the set to randomForest.

best <- model.combinations[which(model.combinations$OOB.RMSE ==

min(model.combinations$OOB.RMSE)), "comb"]

model <- randomForest(y ~ .,

data = data.small,

ntree = model.combinations[model.combinations$comb == best,]$tree.size,

mtry = model.combinations[model.combinations$comb == best,]$mtry,

nodesize = model.combinations[model.combinations$comb == best,]$node.size,

importance = TRUE)

We now illustrate this practically using our first example, (Howard and Owens 2020). First, we
define the hyperparameters: we increment mtry and node by 2 and tree by 100. We then create
the grid of parameters hyperparameter.grid.HO using makeHyper.

hyperparameter.grid.HO <- makeHyper(

min.mtry = 2, max.mtry = 12, mtry.increment = 2,

min.node = 2, max.node = 11, node.increment = 2,

min.tree = 200, max.tree = 2000, tree.increment = 100)

We would pass a dataframe with the dependent variable and independent variables. Assuming the
dataframe is ho.rf.data.nona.nointaxn, and the dependent variable is bypass, we would fit

for(i in 1:nrow(hyperparameter.grid.HO)) {

the.model <- ranger(formula = as.factor(bypass) ~ .,

data = ho.rf.data.nona.nointaxn,

num.trees = hyperparameter.grid.HO$tree.size[i],

mtry = hyperparameter.grid.HO$mtry[i],

min.node.size = hyperparameter.grid.HO$node.size[i])

hyperparameter.grid.HO$OOB.RMSE[i] <- sqrt(the.model$prediction.error)

}

Notice that the last line saves the prediction error from each combination. We’d then choose the
combination parameter set with the lowest prediction error.

the.combo <- hyperparameter.grid.HO[which(hyperparameter.grid.HO$OOB.RMSE ==

min(hyperparameter.grid.HO$OOB.RMSE)), "comb"]

To then fit the model, we’d just use the same dataset. Notice we’re pulling the hyperparameters
from the grid search.

5



full.rf.ho.nointaxn <- randomForest(as.factor(bypass) ~ .,

data = ho.rf.data.nona.nointaxn,

ntree = hyper.grid.ho.nointaxn[hyper.grid.ho.nointaxn$comb ==

the.combo,]$tree.size,

mtry = hyper.grid.ho.nointaxn[hyper.grid.ho.nointaxn$comb ==

the.combo,]$mtry,

nodesize = hyper.grid.ho.nointaxn[hyper.grid.ho.nointaxn$comb ==

the.combo,]$node.size,

importance = TRUE)

2.1.2 Global interpretation

Although we specifically advocate for using graphical interpretation methods to unpack the po-
tential inferences from machine learning models, we offer a few points on global model interpre-
tation here.

First, it’s important to communicate the cross-validation conducted for the model tuning parame-
ters. This is akin to describing the makeHyper process. For instance, we would report that to set
our hyperparameters (i.e., tuning parameters), we used a cross-validation procedure that was run
over a grid search of different combinations of hyperparameter values. Specifically, we set the
number of variables to randomly choose from at each node split (“m-try”), the minimum number
of observations allowed in a terminal node, and the number of B trees to construct.

We can also generally assess model fit, although our emphasis in this text is on interpretation.
Model fit is typically done by examining average mean squared error (MSE), especially if the
problem is a regression problem, but we could also use some measure of classification accu-
racy if the dependent variable is categorical. This measure of fit is calculated on the out-of-bag
samples. Often machine learning models entered into prediction competitions have a final “test”
sample that is used to pick a winning model. We could of course compare our MSE against that
of a parametric model. But since we are advocating for the use of tree-based models for learn-
ing and explanation, purely focusing on predictive accuracy is not a large part of our emphasis:
we will typically always find that tree-based models are much more accurate (i.e., fit better) than
parametric models. For a good example of model prediction across both parametric and machine
learning models in political science, see Muchlinski et al. (2016).

2.1.3 Using Machine Learning with fixed effects

In the main manuscript, our replication of Howard and Owens (2020) included fixed effects for
both the various Congressional sessions included in the sample, as well as the specific policy
areas. Such variables are typically termed factors in the machine learning literature, since, un-
like simple dummy variables (e.g., a senator voted “yes” or “no”), these represent categorical
variables with more than two categories (although they are functionally estimated as a series of
dummy variables: if it is one Congressional session, it’s not any other Congressional session). To
remain consistent with Howard and Owens, we also include these fixed effects in the same for-
mat they did. In the machine learning context, though, there is a clear drawback: in a given tree,

6



while some of these fixed effects may be included, others will likely not be (e.g., the 110th and
107th Congress session dummies were included, but not the 108th or 109th). While this is likely
much less of a problem for a machine learning model than for a parametric model—from a statis-
tical standpoint, the final predictions or inferences are done by averaging over hundreds or even
thousands of trees, meaning that all of the fixed effects were likely used for at least some trees—
this approach fails to treat these fixed effects as, conceptually, a single variable, as one reviewer
noted. As such, we note three different potential methods of incorporating such fixed effects into
their machine learning models.

First, one might not include any fixed effects. This is likely not a good idea, as there may be vari-
ation explained by the fixed effects that is important. Moreover, given that Random Forests can
easily handle more predictors than parametric models, we should probably err on the side of in-
cluding more predictors, not less.

Second, one might include all fixed effects, coded as unique dummy variables. This is our current
approach described above in the Howard and Owens example. Consider a categorical variable
with categories A, B, C, and D that we turn into dummy variables. Inclusion of dummy variable A
at a particular node in a tree, for instance, therefore partitions the data in that branch into A versus
not-A (i.e., {B,C,D}). The advantage of this approach is it does not ask much of the algorithm at
each node split; in our example, the algorithm picks the A/not-A dummy versus whatever other
candidate predictors are possible to select at that node. The disadvantage, of course, is that we are
really only splitting into one group versus all other groups at a time. In other words, we are treat-
ing each category (relative to all others) in isolation. Given, however, that we write specifically
to legislative scholars, we’re aware of the ubiquity of fixed effects for Congresses, states, years,
or parties that are commonly used as categorical indicators: so this approach is probably the most
consistent with the current legislative literature.

A third option, unique to Random Forests (compared to standard parametric approaches), in-
volves including the variable as a single categorical variable, not as separate dummy variables
as done above. If this categorical variable is selected for a given node, the algorithm will search
through all possible combinations of categories in order to partition the data into two groups, in
what is known as a “binary criteria split.” For instance, it would try {A} versus {B,C,D}, {A,B}
versus {C,D}, {A,B,C} versus {D}, and so on. This approach keeps all categories together, and
although it will only partition the categories into two classes, keep in mind these classes may dif-
fer substantially between different nodes and trees. The downside is this approach is computa-
tionally complex; with c categories and only a binary split, there are still 2c−1− 1 possible splits
to consider. Thus, this approach is not feasible if there are a large number of categories; indeed,
to the best of our knowledge the randomForest package only allows for up to 53 distinct cate-
gories.

7



2.2 Graphical interpretations
2.2.1 Variable Importance Plots

Assuming that we fit the Random Forest model with randomForest, creating a VIP is relatively
easy, as the importance measures are stored in model$importance. Liaw and Wiener (2018), in
the randomForest documentation, define the importance measure. For each tree, the prediction
error on the out-of-bag portion of the data is recorded (for classification, like the Howard and
Owens (2020) example, this would be the classification error rate; for regression, like the Poyet
and Raunio (2020) example, this would be the mean squared error, or MSE). This is done again
after permuting each predictor variable. The difference between the two are then averaged over
all of the trees. This measure can then be normalized by the standard deviation of the differences;
this measure is accessible in model$importanceSD.

Variable Importance Plots, then, are most easily created in R following a five-step structure:

1. Save the variables and importance measures from the model.

2. Ensure the measures are explicitly numeric for plotting.

3. Create the variable labels (for publication).

4. Order the importance measure for plotting.

5. Pass the data to ggplot.

Using the Howard and Owens (2020) example, given the Random Forest model is saved as
full.rf.ho.nointaxn, we would first frame the variable names and the importance measure

ho.X.vars.nointaxn.vip.dat <- data.frame(

names = rownames(full.rf.ho.nointaxn$importance),

MDA = full.rf.ho.nointaxn$importance[,1]/full.rf.ho.nointaxn$importanceSD)

We can add an explicitly numeric version of the variable back to the data:

ho.X.vars.nointaxn.vip.dat$MDA <-

as.numeric(ho.X.vars.nointaxn.vip.dat$MDA.MeanDecreaseAccuracy)

We’re now ready to plot. We can define less-ugly variable labels. For instance, for Figure 2 in the
main text, we added a set of variable names through

ho.X.vars.nointaxn.vip.dat$Variable <- c("Polarization", "Cosponsors",

"Bills Introduced", "Sponsor Seniority", "Time Remaining",

"Extremity", paste0(100:113, " Congress"),

paste0("Major Area ", c(2:10, 12:21, 99)),

"Minority Sponsor", "Committee Chair", "Floor Leader",

"Up for Election", "Duplicate Bill",

"Nontrivial Bill", "Party Bill")

8



If we wanted to ignore the labels for fixed effects (or other substantively uninteresting predic-
tors), we could replace those terms with a blank quotation to plot a blank label.

ho.X.vars.nointaxn.vip.dat$Variable2 <- c("Polarization", "Cosponsors",

"Bills Introduced", "Sponsor Seniority", "Time Remaining",

"Extremity", rep(" ", length(100:113)),

rep(" ", length(c(2:10, 12:21, 99))),

"Minority Sponsor", "Committee Chair", "Floor Leader",

"Up for Election", "Duplicate Bill",

"Nontrivial Bill", "Party Bill")

If we want to distinguish key theoretical variables, we could use a simple indicator. For instance,
to distinguish the key variables of Howard and Owens (2020) (extremity, minority sponsor, and
committee chair), we could create an indicator (in the ho.X.vars.nointaxn.vip.dat dataset)
through

ho.X.vars.nointaxn.vip.dat$ho.key.var <- "no"

ho.X.vars.nointaxn.vip.dat$ho.key.var[ho.X.vars.nointaxn.vip.dat$Variable ==

"Extremity"] <- "yes"

ho.X.vars.nointaxn.vip.dat$ho.key.var[ho.X.vars.nointaxn.vip.dat$Variable ==

"Minority Sponsor"] <- "yes"

ho.X.vars.nointaxn.vip.dat$ho.key.var[ho.X.vars.nointaxn.vip.dat$Variable ==

"Committee Chair"] <- "yes"

Finally, we sort the values by importance and pass to ggplot

ho.X.vars.nointaxn.vip.dat.sort <- ho.X.vars.nointaxn.vip.dat %>%

arrange(-MDA)

In the plot, notice that the fill aesthetic is the ho.key.var indicator we just established.

ho.X.vars.nointaxn.vip.plot <- ggplot(ho.X.vars.nointaxn.vip.dat.sort,

aes(x = reorder(Variable, -MDA), y = MDA, fill = ho.key.var)) +

geom_bar(stat = "identity") +

theme_minimal() +

theme(axis.text.x = element_text(angle=75, hjust = 1),

legend.position = "none") +

scale_fill_manual(values = c("yes" = "black", "no" = "grey50")) +

scale_x_discrete(labels = ho.X.vars.nointaxn.vip.dat.sort$Variable2) +

xlab("") +

ylab("Mean Decrease Accuracy")

Again, this measure is interpreted as a way of seeing the relative “importance”—in terms of pre-
dictive accuracy—of each variable in the Random Forest. Recall that this is cleverly done by
permuting a predictor and seeing how much worse the prediction becomes relative to the un-
permuted predictor. Thus, more important predictors would have a much larger decrease in ac-
curacy when we permute them.

We could also use varImpPlot(), a part of the randomForest package, but the plots are rather
crude and are inconsistent with many of the ggplot visualizations we typically use.

9



2.2.2 Partial Dependence Plots

Assuming that we fit the Random Forest model with randomForest, creating a PDP is also rela-
tively easy. PDPs show the effect of a predictor while averaging over the effects of other predic-
tors. It serves as an intuitive depiction of the relationship between a predictor of interest and the
dependent variable, while basically “controlling” for all other effects of other predictors. This is
especially straightforward using the partial function from the pdp package. Partial Dependence
Plots, then, are most easily created in R following a three-step structure:

1. Define the prediction function.

2. Create the partials using partial.

3. Pass the data to ggplot.

Using the Howard and Owens (2020) example, we would first define the prediction function.
Since this is a classification problem (bypassing the committee is a dummy indicator), we need to
write a prediction function that isolates the probabilities. We could write a more generic function,
but to illustrate the point precisely, if the Random Forest results are in full.rf.ho.nointaxn,
we could write:

ho.X.vars.nointaxn.pdppred <- function(object, newdata) {

predict(full.rf.ho.nointaxn, newdata, type = ’prob’)[, 2]

}

For our second example, Poyet and Raunio (2020), it’s a regression problem (number of speeches
is much closer to continuous), so we need to write a prediction function that just calculates the
predicted values:

pr.X.vars.nointaxn.pdppred <- function(object, newdata) {

predict(full.rf.pr.nointaxn, newdata)

}

With the prediction function established, we can return the predictions really easily. Returning to
our first example, if we wanted the PDP for member extremity, we would run:

the.pdp.ext <- partial(full.rf.ho.nointaxn,

pred.var = "extremity100_scaled",

pred.fun = ho.X.vars.nointaxn.pdppred)

The first argument is the model, the second is the variable for which we want the PDP
(extremity100_scaled), and the third is the prediction function we just wrote. Finally, we just
plot the resulting dataframe (the.pdp.ext):

ext.pdp <- ggplot() +

stat_summary(data = the.pdp.ext, aes(x = extremity100_scaled, y = yhat),

fun = mean, geom = "line", col = "black", size = 2) +

theme_minimal() +

xlab("Extremity") +

ylab("Predicted Value") +

geom_rug(data = ho.rf.data.nona.nointaxn, aes(x = extremity100_scaled))

10



If we wanted to retain the standard deviation of the partials (for something like confidence inter-
vals), we could write another prediction function:

ho.X.vars.nointaxn.pdppred.sd <- function(object, newdata) {

preds <- predict(object, newdata, type = ’prob’)[, 2]

c("mean" = mean(preds),

"lower" = mean(preds) - sd(preds),

"upper" = mean(preds) + sd(preds))

}

We could then aggregate these partials for plotting:

the.pdp.ext.sd.wide <- data.frame(extremity100_scaled =

the.pdp.ext.sd$extremity100_scaled[the.pdp.ext.sd$yhat.id == "mean"],

lower = the.pdp.ext.sd$yhat[the.pdp.ext.sd$yhat.id == "lower"],

mean = the.pdp.ext.sd$yhat[the.pdp.ext.sd$yhat.id == "mean"],

upper = the.pdp.ext.sd$yhat[the.pdp.ext.sd$yhat.id == "upper"])

ext.pdp.sd <- ggplot(data = the.pdp.ext.sd.wide,

aes(x = extremity100_scaled, y = mean)) +

geom_line(lwd = 2) +

geom_ribbon(aes(ymin = lower, ymax = upper, alpha = 0.2,

linetype = "dashed")) +

theme_minimal() +

theme(legend.position = "none") +

xlab("Extremity") +

ylab("Predicted Value")

There’s no agreement on whether adding these pseudo-confidence-intervals is accepted practice.
Evans and Murphy (2019) explicitly recommend it as an extension to drawing the PDP, and, of
course, there’s nothing wrong with shading or indicating an area where some percent of the pre-
dictions fall. However, it would be incorrect to refer to these intervals as real “confidence inter-
vals,” and it would certainly be incorrect to use them to test a hypothesis. We reiterate again: the
PDP is just averaging over many predictions, so it is not equipped to test a hypothesis in the stan-
dard statistical-significance framework. Thus, we only recommend adding these shaded areas if
the analyst is explicitly clear that they are purely illustrative.

Moreover, as we discuss below, a better strategy may exist that would also help illustrate the het-
erogeneity in the predictions (i.e. the region we would ultimately “shade” on the PDP). If we
want to envision the heterogeneity of the PDP, we might actually plot individual conditional ex-
pectations, rather than trying to plot the standard deviations of the combined predictions. This is
the Individual Conditional Expectation plot discussed in the next section.

If we wanted a two-way PDP, like an interaction, all we have to do is pass multiple variables to
partial. For instance, if we wanted it based on extremity and minority party status, we would
pass:

11



the.pdp.ext.min <- partial(full.rf.ho.nointaxn,

pred.var = c("extremity100_scaled", "minority_fac"),

pred.fun = ho.X.vars.nointaxn.pdppred, chull = TRUE)

From there, we would plot the resulting partials as normal. Such interactive PDPs can uncover
“hidden” interactions between predictors; for a good example of this see Funk, Paul and Philips
(2021). One word of caution with interactive PDPs is that we probably only want to create PDPs
for interactive scenarios for which the data were actually observed; Random Forests perform
badly when extrapolating to data points that are extreme or atypical values never observed in the
dataset (Greenwell 2017). For this reason, we should only show PDPs inside the “convex hull”,
which can be done using the option chull = TRUE.

2.2.3 Individual Conditional Expectation Plots

Creating an ICE plot is extraordinarily straightforward. In the above, drawing the PDP required
that we average over the predictions for every observation along each value of our variable of in-
terest; recall that PDPs hold the value of all control variables, xic at their actual values for each
observation as we vary our variable of interest, xs, and create prediction functions f̂ (i) for each
observation. From this we take the average to create the PDP. In contrast, an ICE plot simply
draws the actual prediction functions f̂ (i) (the “individual” conditional expectations), rather than
taking the average. Using the same partials as above, contained in the.pdp.ext, we draw the
individual lines by instructing ggplot to group the lines by their identifier in the the.pdp.ext
dataset: yhat.id. Notice the additional group aesthetic passed through geom_line:

ext.ice <- ggplot() +

geom_line(data = the.pdp.ext, aes(x = extremity100_scaled, y = yhat,

group = yhat.id), alpha = 0.2) +

stat_summary(data = the.pdp.ext, aes(x = extremity100_scaled, y = yhat),

fun = mean, geom = "line", col = "black", size = 2) +

theme_minimal() +

xlab("Extremity") +

ylab("Predicted Value") +

geom_rug(data = ho.rf.data.nona.nointaxn, aes(x = extremity100_scaled))

Something to be attentive to is the number of conditional expectations to draw, since many datasets
will have too many observations to practically fit on one plot, requiring that we only draw a sub-
set. To draw a smaller set of lines, the easiest way is to create a smaller version of the partial pre-
dictions. As with any random action, best practice is to set a seed for replication.

set.seed(77281)

lines.to.draw <- 500

the.ext.yhats <- sample(1:max(the.pdp.ext$yhat.id),

lines.to.draw, replace = FALSE)

the.pdp.ext.small <- the.pdp.ext[the.pdp.ext$yhat.id %in% the.ext.yhats,]

12



There are two extensions of ICE plots. One is a “centered” ICE plot, or c-ICE (Goldstein et al.
2015), whereby some observed location x∗ along xs is chosen, and all lines are forced to run
through that point. The c-ICE plots for plotting along a single predictor variable are given as:

f̂ (i)cICE = f̂ (i)(xs)− f̂ (x∗,xic) (1)

where f̂ (i)s is the original ICE curve and f̂ (x∗,xic) is the prediction for location x∗ for observa-
tion i. This has the effect of ‘anchoring’ (or centering) all trends to run through a single common
point (Molnar 2020). Goldstein et al. (2015) suggest using either the minimum or maximum ob-
served value of xs as this anchor. c-ICE plots are valuable since they can help uncover hetero-
geneity and clustering of certain observations, which can be hard to see if the observations have
different average levels across xs. In other words, by centering all curves, it can be easier to see
differences in slopes across observations that might otherwise be obscured by differences in lev-
els.

Derivative ICE (d-ICE) plots are another variant of ICE plots (Goldstein et al. 2015). d-ICE plots
show the partial derivative of each ICE curve with respect to the predictor variable of interest, and
can be used to probe for ‘hidden’ interactions between this predictor and the other control vari-
ables. If there are no interactive effects, the d-ICE plot will look like a single line which shows
the partial derivative (i.e., the effect is constant across all observations). However, if there are in-
teractive effects, they will appear as heterogeneous partial derivative lines in the plot. Derivatives
cannot be analytically derived but are instead numerically approximated (Goldstein et al. 2015),
so creating d-ICE plots often takes a long time. Both c-ICE and d-ICE plots can be created using
the ICEbox package (Goldstein, Kapelner and Bleich 2017).

13



References
Apley, Daniel W and Jingyu Zhu. 2016. “Visualizing the effects of predictor variables in black

box supervised learning models.” arXiv preprint arXiv:1612.08468 .

Doshi-Velez, Finale and Been Kim. 2017. “Towards a rigorous science of interpretable machine
learning.” arXiv preprint arXiv:1702.08608 .

Evans, Jeffrey S. and Melanie A. Murphy. 2019. rfUtilities: Random Forests Model Selection
and Performance Evaluation. R package version 2.1-5.
URL: https://CRAN.R-project.org/package=rfUtilities

Friedman, Jerome H. 2001. “Greedy function approximation: a gradient boosting machine.”
Annals of statistics pp. 1189–1232.

Funk, Kendall D, Hannah L Paul and Andrew Q Philips. 2021. “Point break: using machine
learning to uncover a critical mass in women’s representation.” Political Science Research and
Methods pp. 1–19.

Goldstein, Alex, Adam Kapelner and Justin Bleich. 2017. “Package ‘ICEbox’.”.

Goldstein, Alex, Adam Kapelner, Justin Bleich and Emil Pitkin. 2015. “Peeking inside the black
box: Visualizing statistical learning with plots of individual conditional expectation.” Journal
of Computational and Graphical Statistics 24(1):44–65.

Greenwell, Brandon M. 2017. “pdp: an R Package for constructing partial dependence plots.”
The R Journal 9(1):421–436.

Hastie, Trevor, Robert Tibshirani and Jerome Friedman. 2013. The elements of statistical learn-
ing: Data mining, inference, and prediction. Second ed. Springer Science & Business Media.

Howard, Nicholas O. and Mark E. Owens. 2020. “Circumventing Legislative Committees: The
US Senate.” Legislative Studies Quarterly 45:495–526.

Kim, Been, Rajiv Khanna and Oluwasanmi O Koyejo. 2016. “Examples are not enough, learn to
criticize! criticism for interpretability.” Advances in neural information processing systems 29.

Liaw, Andy and Matthew Wiener. 2018. “Breiman and Cutler’s Random Forests for Classifica-
tion and Regression.” R Documentation for package ‘randomForest’ pp. 1–29.

Molnar, Christoph. 2020. Interpretable Machine Learning. Lulu. com.

Montgomery, Jacob M and Santiago Olivella. 2018. “Tree-Based Models for Political Science
Data.” American Journal of Political Science 62(3):729–744.

Muchlinski, David, David Siroky, Jingrui He and Matthew Kocher. 2016. “Comparing random
forest with logistic regression for predicting class-imbalanced civil war onset data.” Political
Analysis 24(1):87–103.

14



Poyet, Corentin and Tapio Raunio. 2020. “Reconsidering the Electoral Connection of Speeches:
The Impact of Electoral Vulnerability on Legislative Speechmaking in a Preferential Voting
System.” Legislative Studies Quarterly .

Ribeiro, Marco Tulio, Sameer Singh and Carlos Guestrin. 2016. ” Why should i trust you?” Ex-
plaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining. pp. 1135–1144.

Zhao, Qingyuan and Trevor Hastie. 2019. “Causal interpretations of black-box models.” Journal
of Business & Economic Statistics pp. 1–10.

15


	What are Machine Learning models?
	How does a Machine Learning model estimate a model?
	How does a Machine Learning model make predictions?

	How do I estimate and interpret a Machine Learning model in R?
	Model estimation
	Hyperparameters
	Global interpretation
	Using Machine Learning with fixed effects

	Graphical interpretations
	Variable Importance Plots
	Partial Dependence Plots
	Individual Conditional Expectation Plots



