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1 Notes on simulations and additional results

In the simulations in the manuscript, rejection rates of β1 were determined using Wald

95% confidence intervals. Long-run effects and confidence intervals were calculated using

the delta method in the R package nlWaldTest (Komashko 2016). To avoid problems

with starting values (c.f., Philips 2018), a “burn-in” period of t = 100 was added to all

2000 simulations across each of the various combinations of T and the parameters.

Below are a series of additional results. These include the following:

• Increasing the error variance in yt from εt ∼ N(0,1) to εt ∼ N(0,5) for all scenarios

in order to increase the amount of noise.

• Measures of efficiency and bias for the short- and long-run effects for each of the

simulations. I show mean square error for the short-run effects and—due to the

sometimes extreme and/or skewed effects given a non-linear combination of pa-

rameter estimates—median square error for the long-run effects. For the spurious

relation scenarios (I through IV), these are the squared error around zero. For the

related scenarios (V and VI), these are the squared error around the true short-run

and long-run effects. For both scenarios, the true short-run effect is always β1 = 2;

the true long-run effect differs in each scenario based on the value of α (dependence

in yt) and β2 (coefficient on the lag of xt). Lower values of mean/median square

error indicate a more preferred model, since bias and/or efficiency is lower.

• Power (rejection rates of the effects that H0 = 0) for the non-spurious scenarios (V

and VI).

• Box-plots showing the estimated short- and long-run effects across all 2000 simula-

tions for the non-spurious scenarios (V and VI).

To make these additional results as accessible as possible to readers, at the end of each

section is a summary paragraph listing the main findings from these additional results.
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1.1 Scenario I: Yt ∼ I(0), Xt ∼ I(0), and unrelated

In Figure 1 I show the proportion of times that the constructed 95 percent confidence

intervals of the short-run effects fail to overlap zero for two I(0), unrelated series. These

results increase the error variance in yt to σ2
ε = 5. The results are quite similar to those

in the main paper.
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Figure 1: Short-run Type I error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5

Note: Contour lines show boundary of 10, 25, and 50 percent rejection rates.

In Figure 2 I show the proportion of times that the constructed 95 percent confidence

intervals of the long-run effects fail to overlap zero for two I(0), unrelated series. These

results increase the error variance in yt to σ2
ε = 5. Similar to Figure 1, these results are

also quite similar to those in the main paper, although the rejection rates appear to be

slightly larger.

In Figure 3 I show mean square error (MSE) results for the short-run effect for two

I(0), unrelated series. Since the two series are unrelated, the “true” effect is zero. A few

things stand out. First, MSE is negligible in the ARDL/ECM and LDV models in larger

T . Second, MSE, although higher in the static model, only really appears to be a problem

when autoregression is high in the dependent variable. Autoregression in the independent

variable appears to be less of an issue, unless yt is also autoregressive.
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Figure 2: Long-run Type I error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5

Note: Contour lines show boundary of 10 percent rejection rates.
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Figure 3: Short-run mean square error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 1
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Figure 4 shows the same short-run MSE results as Figure 3, but now where σ2
ε = 5.

The results are virtually identical to those in Figure 3, albeit MSE is uniformly larger

across all scenarios.
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Figure 4: Short-run mean square error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5

In Figures 5 and 6 I show median-square error results for the long-run effect. Recall

that long-run effects do not exist for the static model. Figure 5 shows the results when

σ2
ε =1, while σ2

ε =5 in Figure 6. Median square error grows larger as autoregression in the

dependent variable approaches one, and tends to be largest when autoregression in the

independent variable is low. Across both the ARDL/ECM and LDV model specifications,

however, median square error declines as T increases. Figure 6, showing the increased

error rates, is similar to Figure 5, although errors are substantially larger, ranging from 0

to 7 in the former and from 0 to 1.5 in the latter.

Summary: Rejection rates for the short-run effect when two series are stationary are

only an issue in the static model and get worse as autoregression increases. Rejection

rates for the long-run effect are only an issue in the LDV model at extremely high levels

of autoregression. MSE appears to only be large in short T , or when autoregression in yt

is high (for the static model in the short-run and ARDL/ECM and LDV in the long-run).

High autoregression in yt appears to affect MSE much more than high autoregression in

xt .
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Figure 5: Long-run median square error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 1
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Figure 6: Long-run median square error, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5
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1.2 Scenario II: Yt ∼ I(0), Xt ∼ I(1), and unrelated

In Scenario II, the dependent variable is stationary, yet autoregressive, while the in-

dependent variable contains a unit root. Both series are unrelated in this scenario. In

Figure 7, I show the short-run rejection rates of H0 = 0, now increasing the error variance

of yt to σ2
ε = 5. These rejection rates are essentially the same—perhaps even slightly

lower, than those in the main paper where σ2
ε = 1; throughout all combinations of T , the

ARDL/ECM specification seems to perform marginally better than the LDV, although

rejection rates for the long-run effect for these three models are higher than convention

when T = 50,250 and autoregression in yt is large.
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Figure 7: Scenario II: Rejection rates for Yt ∼ I(0), Xt ∼ I(1) and σ2
ε = 5

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.

In Figure 8 I show mean square error for the short-run effects (top row) and median

square error for the long-run effects (bottom row). For the short-run, MSE tends to be

lowest for the LDV model and highest in the static model when autoregression in yt is

large, although MSE is negligible for all models in large sample sizes. In the long-run,

MSE is low when autoregression in yt is low but grows as it increases, no matter whether

the ECM, ARDL, or LDV model is used. This is only a problem in short samples, or if

autoregression in yt is near one.

In Figure 9 I show the same MSE results as in Figure 8, but increase the error variance
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Figure 8: Scenario II: Mean (short-run) and median (long-run) square error for Yt ∼ I(0),
Xt ∼ I(1) and σ2

ε = 1

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.

of yt to σ2
ε = 5. Results are similar to those with smaller error variance, although MSE

rates are approximately four times larger.

Summary: When Yt ∼ I(0) and Xt ∼ I(1), short-run rejection rates appear to only

be an issue for the static model, and do not decline as T increases (as they do in the

ARDL/ECM and LDV). In the long-run, rejection rates are high for both the ARDL/ECM

and LDV model but quickly approach convention as T grows or as autoregression in yt

declines. MSE in the short-run is only an issue for the static model in short T and large

autoregression in yt . In the long-run, MSE is high in both the ARDL/ECM and LDV

specifications in short T and large autoregression in yt .
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Figure 9: Scenario II: Mean (short-run) and median (long-run) square error for Yt ∼ I(0),
Xt ∼ I(1) and σ2

ε = 5

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.
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1.3 Scenario III: Yt ∼ I(1), Xt ∼ I(0), and unrelated

In Scenario III, the dependent variable now contains a unit root, while the independent

variable is stationary, yet possibly autoregressive. In Figure 10, I show rejection rates

under increased error variance in yt (σ2
ε = 5). Results are nearly identical to those in the

main paper when σ2
ε = 1; in the short-run, rejection rates are far above convention in the

static model as autoregression in xt increases. In the long-run, rejection rates tend to be

below convention, only rising above 0.05 when T = 50 and autoregression in xt is above

0.75; this applies to both the ARDL/ECM and LDV specifications.

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

P
ro

po
rt

io
n 

R
ej

ec
te

d

Short−Run, T=50

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

P
ro

po
rt

io
n 

R
ej

ec
te

d

Short−Run, T=250

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X
P

ro
po

rt
io

n 
R

ej
ec

te
d

Short−Run, T=1000

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

P
ro

po
rt

io
n 

R
ej

ec
te

d

Long−Run, T=50

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

P
ro

po
rt

io
n 

R
ej

ec
te

d

Long−Run, T=250

0.0

0.2

0.4

0.6

0.8

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

P
ro

po
rt

io
n 

R
ej

ec
te

d
Long−Run, T=1000

Figure 10: Scenario III: Rejection rates for Yt ∼ I(1), Xt ∼ I(0) and σ2
ε = 5

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.

In Figure 11 I show mean square error estimates for the short-run (top row) and

median square error for the long-run (bottom row). As discussed briefly in the main

paper, these results—when the dependent variable is I(1) but the independent variable is

I(0)—are quite different from those when the order of integration is switches (i.e., Scenario

II, where Yt ∼ I(0), Xt ∼ I(1)). In the short-run, MSE is quite low for the ARDL/ECM and

LDV models. MSE is relatively larger in the static model, and gets worse as autoregression

in xt increases. In contrast, we see almost the opposite effect in the long-run. First, MSE

is much larger in the long-run than in the short run, by several orders of magnitude.

Second, MSE gets smaller across all models as autoregression in xt increases. This finding
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adds nuance to previous studies such as De Boef and Granato (1997), since it suggests

that estimates are less likely to be spurious as xt becomes a near-unit-root (i.e., they

are driven towards zero). Taken together with the rejection rates (e.g., Figure 10), the

findings here suggest that for the long-run estimates ARDL/ECM and LDV models are far

from zero, especially when autoregression in xt is small, but that the confidence intervals

nearly always overlap zero.
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Figure 11: Scenario III: Mean (short-run) and Median (long-run) square error for Yt ∼ I(1),
Xt ∼ I(0) and σ2

ε = 1

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.

Figure 12 shows MSE results when the error variance in yt is increased to σ2
ε = 5.

Results are quite similar to those in Figure 11, although MSE appears to be between four

and five times larger in Figure 12.

Summary: When Yt ∼ I(1) and Xt ∼ I(0) and are unrelated, in the short-run, rejection

rates are only a concern for the static model, and do not improve in T . For the long-run

estimates, ARDL/ECM and LDV models are far from zero, especially when autoregression

in xt is small, but that the confidence intervals nearly always overlap zero, as evidenced

by relatively small rejection rates but very large MSE values. Thus, when Yt ∼ I(1) and

Xt ∼ I(0) and not related, large long-run effects that are not statistically significant seem

common. In contrast (see Scenario II), if Yt ∼ I(0) and Xt ∼ I(1) and are unrelated,

rejection rates of the long-run effect are higher, although they tend not to be far away

11



0

1

2

3

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

M
S

E

Short−Run, T=50

0

1

2

3

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

M
S

E

Short−Run, T=250

0

1

2

3

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

M
S

E

Short−Run, T=1000

0

50

100

150

200

250

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

M
ed

ia
n 

S
q 

E
rr

or

Long−Run, T=50

0

50

100

150

200

250

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X
M

ed
ia

n 
S

q 
E

rr
or

Long−Run, T=250

0

50

100

150

200

250

0.00 0.15 0.30 0.45 0.60 0.75 0.90

Autoregression in X

M
ed

ia
n 

S
q 

E
rr

or

Long−Run, T=1000

Figure 12: Scenario III: Mean (short-run) and Median (long-run) square error for Yt ∼ I(1),
Xt ∼ I(0) and σ2

ε = 5

Note: Static (dot-dash), LDV (dash), ARDL/ECM (solid). Long-run effects do not exist for static model.

from zero. This is likely because in the former, the coefficient on the lag of yt will be

significant and near one; this will produce very large long-run effects (i.e., dividing by a

small, near-zero value: 1− α̂ → 0 if α̂ is near one). Yet the coefficients on xt tend to not be

statistically significant, which result in large standard errors surrounding a large (far from

zero) long-run effect estimate. In contrast, if Yt ∼ I(0) and Xt ∼ I(1) (Scenario II), both

the coefficient on the lag of yt (since the series is often autoregressive) and sometimes the

coefficients on xt appear to often be statistically significant, meaning that the long-run

effect is typically small, but sometimes statistically significant.
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1.4 Scenario IV: Yt ∼ I(1), Xt ∼ I(1), and unrelated

In Scenario IV, I regress two unrelated series containing a unit root on one another. In

Figure 13, I increase the error variance of yt to σ2
ε = 5. Results are similar to those in the

main paper where the error variance was only σ2
ε = 1, although while in the main paper

the ARDL, ECM, and LDV models appeared to perform slightly worse in correct coverage

of the long-run effect in increasing T (likely because of smaller standard errors achieving

levels of statistical significance more often), here there is less clear of a relationship as T

grows. Regardless, rejection rates are well above convention for the LDV and static model

for the short-run effects, and above convention (evidence of spurious findings 20 percent

of the time) for all three models in the long-run.
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Figure 13: Scenario IV: Rejection rates for Yt ∼ I(1), Xt ∼ I(1) and σ2
ε = 5

In Figure 14, I show mean square error estimates for the short-run effects when both

series contain a unit root. The left plot in the figure shows MSE when σ2
ε = 1, and σ2

ε = 5

in the right plot. MSE is clearly highest in the static model, and lowest (only slightly)

for the LDV model. When error variance in yt increases to five, MSE gets larger by over

a factor of four. Moreover, while MSE declines in the ARDL, ECM and LDV models as

T increases, it appears to either stay the same or possibly grow for the static model.

In Figure 15, I show median square error results for the three models that can recover

long-run effects, when both variables are I(1). MSE appears to be similar across the model

specifications—note that as mentioned in the main paper, ARDL and ECM results are
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Figure 14: Scenario IV: Mean squared error for short-run effect, Yt ∼ I(1), Xt ∼ I(1)

identical—and perhaps increasing slightly in T when σ2
ε = 1, and decreasing when σ2

ε = 5.
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Figure 15: Scenario IV: Median squared error for long-run effect, Yt ∼ I(1), Xt ∼ I(1)

Summary: When two I(1) series are spuriously related and regressed one another,

short-run estimates appear to be correct for the ARDL/ECM specification (and close for

the LDV), although long-run effects are not correct, and get worse as the error variance in

yt increases. Short-run rejection rates and MSE are extremely high for the static model,

as others have found (Granger and Newbold 1974; De Boef and Granato 1997).
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1.5 Scenario V: Yt ∼ I(0), Xt ∼ I(0), and related

In this scenario, both variables are stationary and related. The quantities that are

varied in this scenario are the coefficient on the lag of xt (either -1 or 1), the level of

autoregression in the dependent variable (α = 0.2,0.8) and the length of the series. The

short-run effect is fixed at β1 = 2, while the long-run effect varies based on the value of α

and β2.1

In Figure 16, I show rejection rates of the short- and long-run effects; this is the same

as the main paper, except here I increase the error variance of the dependent variable to

σ2
ε = 5. Ideally we should expect to reject the true values of the effects around five percent

of the time For the short-run effects (left plots in Figure 16), rejection rates are around

0.05 for all model specifications; only when the dependent variable is highly autoregressive

(α = 0.8) and the lagged effect of xt is one does the static model rise above conventional

levels, and only to about six or seven percent rejection.
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Figure 16: Scenario V: Rejection rates of the effects, Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5

In the long-run (right plots in Figure 16), the ARDL/ECM is around convention when

the level of autoregression is low (α = 0.2), no matter whether the effect of the lag of xt

is positive or negative. In contrast, the LDV model has rejection rates approaching 100
1For instance, the long-run effect when α = 0.2 and β2 = 1 would be LRM = 2+1

(1−0.2 = 3.75, but 15 if
α = 0.8 and β2 = 1.
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percent of the time, and this appears to get worse in T . Moreover, rejection rates for

the LDV are higher when the coefficient on the lag of xt is of oppositely sign than that

of xt (-1 vs 2). A similar high rejection rate for the LDV also occurs when yt is highly

autoregressive and the lag of xt is negative. For the ARDL/ECM, rejection rates are

slightly above convention when yt is highly autoregressive, yet this quickly declines in T .

And when the lag of xt is in the same direction as the short-run effect and yt is highly

autoregressive (bottom-right), the LDV performs roughly similar to the ARDL/ECM.

In Figures 17 and 18, I show power, or how often the null hypothesis of no effect is

rejected. Since the series are related, higher power is more preferred. Across all models,

levels of autoregression in yt , and effect of the lag of xt , power appears to be well above

0.95, with the exception of the LDV (when α = 0.8 and β2 = 1), and the long-run effects

for the ARDL/ECM model in short series and high error variance in yt (when α = 0.8

and β2 = 1). Given these findings (i.e., depending on the coefficients chosen in the Monte

Carlo, we could probably always have—or never have—Type II error), I chose to present

rejection rates of the actual calculated effects in the main paper.
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Figure 17: Scenario V: Power (rejection rates of zero) Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 1

In Figure 19, I show estimates of the mean square error of the short-run effects for

the two related series. When the error variance of yt is low (left plots in Figure 19),

MSE is very low for all models except for the static model under high autoregression and
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Figure 18: Scenario V: Power (rejection rates of zero) Yt ∼ I(0), Xt ∼ I(0) and σ2
ε = 5

a positive lag effect of xt (when α = 0.8 and β2 = 1). Across all models, MSE declines

quite quickly as T increases; even in the static specification MSE becomes negligible (and

very similar to the other models) once T = 1000. And, in general, as the error variance

increases the MSE also increases, as shown by the right plots in Figure 19.
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Figure 19: Scenario V: Mean square error of the short-run effect, Yt ∼ I(0), Xt ∼ I(0)

In Figure 20 I show median square error for the long-run effects for the stationary yet

related scenario. When yt is weakly autoregressive, MSE is quite low across all specifi-

cations, no matter the direction of the effect of xt−1 or the amount of error variance in

yt (MSE is slightly larger for the LDV specification than the ARDL/ECM). When yt is
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highly autoregressive (α = 0.8), the results change substantially. Under this condition,

the ARDL/ECM models still have low MSE as long as T is large, although MSE is much

higher in small T when the lagged effect of xt is in the same direction as the short-run

effect (e.g., the “Alpha = 0.8, Lag X effect = 1” scenario shown in Figure 20). When the

error variance in yt is large, while a similar pattern arises for the ARDL/ECM models, for

the LDV model, things look somewhat different; when the lagged effect of xt is negative,

the model performs well, although not quite as well as the ARDL/ECM. When the lagged

effect of xt is positive, MSE is much higher, although this appears to decline more quickly

in T when the error variance of yt is large.
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Figure 20: Scenario V: Median square error of the long-run effect, Yt ∼ I(0), Xt ∼ I(0)

In the following figures in this section, I show box-plots of the estimates of the short-

run and long-run effects. These are an effective way to better understand the other

quantities of interest presented throughout the paper, such as mean squared error and

rejection rates, since they show the actual distribution of the estimates. They also aid

in determining if, on average, estimates are consistently falling below or above a desired

quantity. Each quadrant of plots shows a different model, each sub-plot in a quadrant

varies the level of α, the two different coefficients on the lag of xt appear on the horizontal

axis of these plots, and the actual box-plots shown differ in T .

Figure 21, which shows the distribution of short-run effects, appears to be estimated
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without bias for all models except the static model. When the lagged dependent variable

is weakly autoregressive (α = 0.2), estimates appear to be attenuated when the coefficient

on the lag of xt is positive. This appears to get larger as α increases (as shown by the

right plots for the static model), where now attenuation occurs both when β2 = −1 and

β2 = −1. Note that this only appears to occur when T is small; short-run effects are

recovered fairly well for all models in large T .
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Figure 21: Scenario VI: Box-plots of the short-run effect, Yt ∼ I(0), Xt ∼ I(0)

Note: σ2
ε = 1 for all simulations shown.

In Figure 22 I show box-plots of the estimates of the long-run effect. Note that since

each of the true long-run effects differs based on the value of α and β2, for comparability

I center each of the long-run effect estimates such that a value of zero means that the

estimate is perfectly centered on the true long-run effect. The ARDL/ECMmodel appears

unbiased and consistent as T increases, although long-run estimates are attenuated slighly

in small T when α = 0.8, especially when the coefficient on the lag of xt is of opposite sign

as the coefficient on xt (i.e., β2 =−1).

In contrast to the ARDL/ECM model, the LDV results in Figure 22 suggest that
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Figure 22: Scenario VI: Box-plots of the long-run effect, Yt ∼ I(1), Xt ∼ I(1)

Note: Long-run effects do not exist for static model. Estimates are centered around zero to enable
comparison across different long-run effects given the combination of α and β2. σ2

ε = 1 for all simulations
shown.
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when the dependent variable is only slightly autoregressive (α = 0.2) and when β2 =−1,

estimates are nearly always biased upwards from the correct long-run effect. Moreover,

estimates remain inconsistent as T increases. There is less bias when β2 = 1, although

a similar issue exists. A similar result appears for the LDV when α = 0.8, although the

results are harder to see given the extremely large single estimate of a very low long-run

effect.

Summary: When two series are stationary and related, the ARDL/ECM model

appears to be the best choice, although coverage of the true effects and power are affected

in small T . Long-run effects suffer from high median-square when α is large, and much less

so when it is small. Short-run effects can be accurately obtained by all models, although

the static model is the worst performer. The LDV model has extremely poor coverage

of the long-run effects compared to the ARDL/ECM models, especially when α is low or

the coefficient on the lagged dependent variable is negative. Long-run effects are nearly

always over-estimated (away from zero) for the LDV model (no matter T ), while they can

be attenuated towards zero in the ARDL/ECM when T is small.
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1.6 Scenario VI: Yt ∼ I(1), Xt ∼ I(1), and cointegrating

In this scenario, I present additional results from two I(1) series that are in a cointe-

grating relationship. in Figure 23, I show rejection rates of the short- and long-run effects,

similar to those in the main paper, but now increasing the error variance in yt to σ2
ε = 5.

The results are nearly identical for the short-run effect; constructed 95 percent confidence

intervals for the short-run effect for the LDV and static models fail to encompass the true

effect of β1 = 2 nearly 100 percent of the time. Rejection rates are slightly higher for

the long-run effects under increased error variance; all models suffer from higher rejection

rates of the true long-run effect when the error correction mechanism is highly persistent

(i.e., α = −0.2), especially in small T . The LDV model has rejection rates higher than

convention for all scenarios except for when α = −0.8, T is large, and the coefficient on

the lag of xt is -1.
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Figure 23: Scenario VI: Rejection rates of the effects, Yt ∼ I(1), Xt ∼ I(1) and σ2
ε = 5

In Figures 24 and 25 I show the power (the proportion of times the estimated effect’s

constructed 95 percent confidence intervals do not include zero) across all scenarios when

σ2
ε = 1 and σ2

ε = 5 for each of the figures, respectively. Similar to Scenario V, the way in

which the Monte Carlo was constructed meant that power was high for nearly every model

in most circumstances, making rejection rates of the true effects (e.g., Figure 23) substan-

tively more interesting. As is clear from Figures 24 and 25, power is very high except for

22



the LDV and static model in small-T cases in which the error correction mechanism is

not persistent (α =−0.8) and the coefficient on the lag of xt is β2 =−1.
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Figure 24: Scenario VI: Power (rejection rates of zero) Yt ∼ I(1), Xt ∼ I(1) and σ2
ε = 1
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Figure 25: Scenario VI: Power (rejection rates of zero) Yt ∼ I(1), Xt ∼ I(1) and σ2
ε = 5

In Figure 26 I show mean square error results for the short-run effect under the coin-

tegrating scenario. MSE is very low for the ARDL/ECM under all scenarios. Short-run

MSE appears to be worst overall for the static model, and then the LDV model. MSE

for these two models is worst when the error correction mechanism is highly persistent

(α = −0.2) and the coefficient on the lag of xt is in the opposite direction as that on xt

(i.e., β2 =−1 while β1 = 2). Interestingly, short-run MSE appears to be nearly identical,
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no matter the error variance in yt .
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Figure 26: Scenario VI: Mean square error of the short-run effect, Yt ∼ I(1), Xt ∼ I(1)

Note: Figure shows median square error of the short-run effect for the models across differing levels of
error variance, σ2

ε , persistence in the error-correction rate, α, coefficient on xt−1, β2, and T .

In Figure 27, I show the median square error results for the long-run effect under

cointegration. Looking at the σ2
ε =1 results (left plots in Figure 27), it is clear that median

square error appears to only be an issue in any of the models when T = 50. Moreover,

this is substantially worse for the LDV specification, but only when the error-correction

mechanism is highly persistent and the coefficient on the lag of xt is in the opposite

direction as that on xt (i.e., β2 = −1 while β1 = 2); in this instance, MSE is about 10

times larger for the LDV than for the ARDL/ECM when T = 50. MSE increases across

all models when the error variance around yt increases, in contrast to the short-run effects

when there was no discernible difference.

In Figure 28 I show box-plots of the estimates of the short-run effect. As described in

the previous section, these show the actual distribution of the estimates, which can aid

in determining if, on average, estimates are consistently falling below or above a desired

quantity. For the ARDL/ECM specifications, short-run effects appear centered on the

true value of two and estimates appear consistent as T increases. For the LDV and

static models, these box-plots go a long way in explaining why MSE was so high under

cointegration, as we found in Figure 26. When the coefficient on the lag of xt is one, the
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Figure 27: Scenario VI: Median square error of the long-run effect, Yt ∼ I(1), Xt ∼ I(1)

Note: Figure shows median square error of the long-run effect for the models across differing levels of
error variance, σ2

ε , persistence in the error-correction rate, α, coefficient on xt−1, β2, and T . Long-run
effects do not exist for static model.

LDV model produces attenuated short-run estimates of about 1.5, no matter the level

of α. This makes sense; if the short-run effect of the DGP is β1 = 2 and the coefficient

on the lag of xt is β2 = 1, the LDV—which is estimating a single coefficient for xt—will

produce some compromise between these two effects. This becomes even more clear when

β2 = −1. In these cases, the esimate of the short-run effect for the LDV in Figure 28 is

now negative, far away from the true value of two. Of course, the LDV is including a

lagged dependent variable, so the error correction mechanism does not appear to affect

short-run effects, only the relationship between the coefficients on xt and xt−1.

For the static model shown in Figure 28, which, unlike the LDV, does not include

a lagged dependent variable, the results of the short-run effect are even worse. When

β2 = −1, short-run estimates are negative; this gets worse when the error correction

mechanism is highly persistent (α = −0.2). When β2 = 1 (i.e., is in the same direction

as the short-run effect), estimates in the static model are closer to the true value of

two, but are underestimated when the error correction mechanism is not persistent (i.e.,

α =−0.8), and overestimated when it is. Across all scenarios for both the static and LDV

specifications, estimates appear to get worse (i.e., converge on the incorrect short-run
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Figure 28: Scenario VI: Box-plots of the short-run effect, Yt ∼ I(1), Xt ∼ I(1)

Note: σ2
ε = 1 for all simulations shown.

value) as T increases.

In Figure 29 I show box-plots of the estimates of the long-run effect. Since each of the

true long-run effects differs based on the value of α and β2, I center each of the long-run

effect estimates such that a value of zero means that the estimate is perfectly centered on

the true long-run effect, to ensure comparability. Once again, the ARDL/ECM specifica-

tions have long-run estimates that appear to be centered on the true value of the long-run

effects. The LDV also appears to do a fairly good job at recovering, on average, unbiased

estimates of the long-run effect, especially if the coefficient on the lag of xt = 1. When the

error correction mechanism is not persistent (i.e., α = −0.8), long-run estimates for the

LDV are biased upwards, and overall long-run estimates have a much larger spread than

for the ARDL/ECM specification.

Summary: The ARDL and ECM models are identical throughout this and all other

data-generating processes. When the dependent and independent variables are cointe-

grating, constructed 95 percent confidence intervals for the static and LDV model fail to
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Figure 29: Scenario VI: Box-plots of the long-run effect, Yt ∼ I(1), Xt ∼ I(1)

Note: Long-run effects do not exist for static model. Estimates are centered around zero to enable
comparison across different long-run effects given the combination of α and β2. σ2

ε = 1 for all simulations
shown.
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encompass the true short-run effect nearly 100 percent of the time, nor does this improve

in T . In other words, when data are cointegrating, obtaining correct short-run effects,

which previous results showed was sometimes possible with the LDV and static specifica-

tions (when data were unrelated or related but stationary and autoregressive), is nearly

impossible. In terms of directions of this bias, in the LDV model it is a compromise of the

coefficients on xt and xt−1 (since only a single coefficient for xt is estimated), while in the

static model the direction and size of the bias depends on the rate of error-correction as

well. In contrast, short-run effects for the ARDL/ECM specification appear unbiased and

consistent in T . Long-run effects for the LDV specification have substantial spread, but

tend to be fairly close to the correct value (though still far worse than the ARDL/ECM).

Long-run effects for the ARDL/ECM specification appear unbiased and consistent in T .

2 Alternative strategies for long-run effect inferences

In the discussion section in the manuscript I mentioned two possible strategies that seem

tempting to use, given the Monte Carlo results showing that short-run inferences tend to

always be correct (when estimating the ARDL/ECM), while the same cannot be said for

long-run effects. The first is whether we should proceed to test for a long-run effect if

we do not find evidence of a short-run effect. The second—which is a strategy suggested

by Enns, Moehlecke and Wlezien (henceforth EMW) in this symposium—suggests not

calculating a long-run effect if the coefficient on the lag of the regressor is not found to be

statistically significant. While page constraints limit this exposition in the manuscript, I

elaborate on why these two alternative strategies are not advisable below.

2.1 First short-run, then long-run?

Can there be a long-run effect if there is no short-run effect? To be clear, by “short-run”,

I mean the contemporaneous effect of x on y at time t. While the short-run effect is

part of the long-run effect, there still can be a long-run effect when no short-run effect is
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observed. Consider a simple example where xt ∼ N(0,1),εt ∼ N(0,1), and:

yt = ϕyt−1+β0xt +β1xt−1+ εt = 0.8yt−1+0xt +3xt−1+ εt (1)

An ARDL(1,1) regression using simulated data of this process is shown in Table 1. Given

the predominant interpretation of short-run effects, the non-significant coefficient on xt

would lead us to conclude that there is indeed no short-run effect. Yet clearly a long-run

effect exists of LRM = −0.02+3.12
1−.80 = 15.44; moreover, this effect is statistically significant.

Note that we would reach the same conclusion were we to estimate an ECM as well,

as shown below in Table 2. Here, we would conclude that there is no short-run effect

since the coefficient on ∆xt is near-zero, although once again there is a long-run effect of

LRM = 3.10
−.20 = 15.44.

Table 1: Simulated data with no short-run effect, ARDL(1,1)

b (se)
yt−1 0.80* (0.02)
xt -0.02 (0.11)
xt−1 3.12* (0.11)
Constant 0.06 (0.11)

T = 99. Coefficients with standard errors in parentheses. ∗: p < .05.

Table 2: Simulated data with no short-run effect, ECM

b (se)
yt−1 -0.20* (0.02)
∆xt -0.02 (0.02)
xt−1 3.10* (0.17)
Constant 0.06 (0.11)

T = 99. Coefficients with standard errors in parentheses. ∗: p < .05.

Thinking more broadly, the short-run effect is only one parameter in the LRM calcu-
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lation; given L lags of xt−l (and assuming an ARDL form like Equation 1):2

LRM =
∑L

l=0βl

1−ϕ
(2)

Clearly if β0 = 0, that does not tell us much about the values of the other parameters.

Thus, while some βl have to have an effect in order for there to be an LRM, it does

not necessarily need to be β0, the coefficient at time t (i.e., the short-run effect). Indeed,

many models do not even estimate contemporaneous/short-run effects. Dead-start models

(which was used in the example above) have regressors appearing in the model only after

some lag (c.f., De Boef and Keele 2008)—in effect, restricting the short-run effect to

zero—yet of course they can have long run effects. Or take cointegrating ECM models,

where is not unheard of to include only lagged changes of regressors; for instance, Engle

and Granger (1987, p. 272) include lagged changes from t − 1 to t − 4, precluding the

possibility of any short-run effect appearing at time t. Indeed, in standard representations

of cointegrating systems, first-differences of variables can only appear at time t if we

assume weak exogeneity (Enders 2010).

Last, results in seminal time series texts and articles often find evidence of a statisti-

cally significant long-run effect but no short-run effect. In their error-correction model,

Pesaran, Shin and Smith (2001, Table III, p. 314) find that only two of the four regressors

in their model have statistically significant first differences appearing contemporaneously,

even though they find evidence for cointegration. Pickup (2014, p. 192-193) estimates an

ECM on all-stationary data and concludes that “there does not appear to be a significant

short-run effect for any of the three economic variables”. He then finds evidence that one

of these variables does have a significant long-run effect.
2This becomes even more clear in the ECM, where the equation for the long-run effect does not even

include short-run changes: LRM = β1
−ϕ (where β1 is the coefficient on the lag of xt).
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2.2 First xt−1, then long-run?

The other proposed strategy involves first testing whether the coefficient on the lag of

xt−1 is statistically significant (Enns, Moehlecke and Wlezien, this symposium). If so,

proceed to calculate the long-run effect. If not, then conclude that there is no long-run

effect. What if we had pursued this strategy? Below I show the same setup for the

Monte Carlo’s described in Section 2.1 above, but now show the rejection rates of the

long-run effect equaling zero in Scenarios I-IV. In Scenarios V and VI, which estimate

true relationships, I see how the EMW strategy compares to always calculating the LRM.

2.2.1 Scenario I: Yt ∼ I(0), Xt ∼ I(0), and unrelated

Figure 30 shows the proportion of times we find a statistically significant long-run effect

when the coefficient on xt−1 (ARDL/ECM) or xt (LDV) is also statistically significant.

Since the static model does not have a long-run effect, it is omitted. The lagged dependent

variable (LDV) model does not include the lag of xt , but I include it for comparison to

the ARDL/ECM specifications (which do). For the LDV model, I proceeded to calculate

a long-run effect only if the coefficient on xt was statistically significant. The results are

fascinating, primarily for the fact that we end up with different rejection rates between

the ARDL and ECM models. To be clear, the long-run effects are identical, as shown

numerous times throughout this SI.3 However, the strategy of proceeding to calculate the

LRM depending on the significance of the lag of xt—and then going on to show these

proportions—is what causes the plots to appear different. In Figure 30, we find that the

ARDL model produces much lower rates of spurious long-run effects when this strategy is

pursued compared to the ECM. The LDV appears relatively unchanged to results found

in the main manuscript under this strategy. Note of course that these rejection rates will

always be smaller than those shown in Figure 2 in the main manuscript (which showed

any significant LRM without regards to the statistical significance of xt−1 (ARDL/ECM)

or xt (LDV).
3The short-run effects are identical too, as are the rejection rates when examining all simulations (i.e.,

without the rejection strategy proposed by EMW.
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Figure 30: Scenario I: Long-run rejection rates, calculated only if xt−1 (ARDL/ECM) or
xt (LDV) is statistically significant

Note: Figure shows the proportion of times the LRM was statistically significant when xt−1 (ARDL/ECM)
or xt (LDV) was also statistically significant. Contour lines show boundary of 10 percent rejection rates.
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To summarize the findings for Scenario I, when we pursue a strategy of only calculating

the LRM if xt−1 (ARDL/ECM) or xt (LDV) is first found to be statistically significant, we

are likely to avoid spurious inferences about LRMs only for the ARDL model, as compared

to always calculating the LRM without regards to the other coefficients.

2.2.2 Scenario II: Yt ∼ I(0), Xt ∼ I(1), and unrelated

The results showing the same strategy outlined above for Scenario II (Yt ∼ I(0),

Xt ∼ I(1), and unrelated) are shown in Figure 31. Similar to the findings in Scenario

I, using the strategy of not calculating the LRM if xt−1 (ARDL/ECM) or xt (LDV) is not

statistically significant is a good strategy (when series are spuriously related) only for the

ARDL specification, with spurious LRMs almost never occurring. In contrast, for both

the ECM and LDV specifications, spurious LRMs occur relatively often, and somewhat

inconsistently across the level of autoregression in yt .
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Figure 31: Scenario II: Long-run rejection rates, calculated only if xt−1 (ARDL/ECM) or
xt (LDV) is statistically significant

Note: Figure shows the proportion of times the LRM was statistically significant when xt−1 (ARDL/ECM)
or xt (LDV) was also statistically significant. Solid line: ARDL, dotted: ECM, dashed: LDV.
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Why do the ECM and ARDL models differ so much in Figure 31? In this scenario,

the equation balance issue is with the regressor containing a unit root, not the dependent

variable. With the ARDL model, by including both xt and xt−1, the two unit-root re-

gressors are partialing out much of their shared variation (which is extremely high, given

that xt is I(1); really all that is left here is innovations occurring in x between t −1 and t).

In contrast, in the ECM, only xt−1 contains a unit root; ∆xt is made stationary through

first-differencing. Thus, there is little shared covariation between xt−1 and ∆xt (or yt−1,

which is also stationary), which likely gives rise to a large number of times when the

coefficient on xt−1 is statistically significant. A similar phenomenon occurs with the LDV

model, since only yt−1 is being used to partial out covariation in xt . In fact, the two seem

to converge at T grows.

2.2.3 Scenario III: Yt ∼ I(1), Xt ∼ I(0), and unrelated

I show results of the EMW applied to Scenario III in Figure 32. Consistent with the

findings above, the ARDL once again results in very low rates of finding a spurious LRM

with this strategy, and spurious LRMs are about equally likely using the ECM or LDV

specifications. However, spurious LRMs only occur at very high rates of autoregression

in xt , and decline such that by T = 250, no model finds evidence of spurious LRMs above

convention.

2.2.4 Scenario IV: Yt ∼ I(1), Xt ∼ I(1), and unrelated

For the final spurious scenario, both series contain a unit root. The rejection rates of

the LRM using the strategy outlined above are shown in Figure 33. Similar to our earlier

findings, the ARDL model has spurious LRMs occur well under convention when using a

strategy of only calculating it if xt−1 is statistically significant. In contrast, this strategy

results in high Type I error for both the ECM and LDV specifications. While rejection

rates are smaller than in the main manuscript where this strategy was not used (those

rejection rates were around 17%), they are still above convention for the ECM and LDV.
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Figure 32: Scenario III: Long-run rejection rates, calculated only if xt−1 (ARDL/ECM)
or xt (LDV) is statistically significant

Note: Figure shows the proportion of times the LRM was statistically significant when xt−1 (ARDL/ECM)
or xt (LDV) was also statistically significant. Solid line: ARDL, dotted: ECM, dashed: LDV.
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Figure 33: Scenario IV: Long-run rejection rates, calculated only if xt−1 (ARDL/ECM)
or xt (LDV) is statistically significant

Note: Figure shows the proportion of times the LRM was statistically significant when xt−1 (ARDL/ECM)
or xt (LDV) was also statistically significant.
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2.2.5 Scenario Va: Yt ∼ I(0), Xt ∼ I(0), and related

Recall that Scenario V examined true relationships between stationary series. How

would the EMW strategy work here? Let:

yt = αyt−1+2xt +β2xt−1+ εt (3)

where xt has a contemporaneous effect of β1 = 2, α = 0.2,0.8 and β2 = −1,0,1 and εt ∼

N(0,σ2
y) where σ2

y = 1,5. I include the possibility of β2 = 0 in these simulations since

EMW’s suggestion would lead us to not go on to calculate a long-run effect where β2 = 0,

even though there would still exist a non-zero LRM of β1+β2
1−α = 2+0

1−α . Thus, this likely

represents a difficult test of their recommendation, even though such a data-generating

process—where xt affects yt at time t but not one period later—is entirely plausible in

social science situations. Unlike Scenario V in the main manuscript, I also allow xt to

be possibly autoregressive of order AR(1), i.e., xt = αxxt−1+ ut where αx = 0,0.75 and

ut ∼ N(0,1).4 Last, by varying the signal-to-noise ratio, we are able to examine possible

changes in standard errors, which again should affect our rejection rates with this strategy.

The results from 2000 simulations using the setup described above are shown in Figure

34. The vertical axis represents the “proportion missed”, or the number of simulations

for which we failed to find evidence that xt−1 (ARDL/ECM) or xt (LDV) was statisti-

cally significant—simulations where the constructed 95% confidence intervals did correctly

cover the true LRM—expressed as a proportion of all simulations where the constructed

95% confidence interval correctly encompassed the true long-run effect:5

Proportion Missed=
Number of simulations where β2 = 0 AND correct LRM found

Number of simulations that correctly found LRM
(4)

Essentially, it is the proportion of times that we would have stopped after finding that

xt−1 (ARDL/ECM) or xt (LDV) was not statistically significant, and not gone on to
4Both ut and εt were generated independently.
5Equation 4 uses a test of β2 = 0 for the ARDL/ECM, and β1 = 0 for the LDV.
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calculate the LRM (which would have correctly covered the true LRM); this is exactly

the suggestion of EMW. A value of 0 means that no simulations were missed using this

approach, while 1 would indicate that 100% of all simulations that would have correctly

found evidence of the LRM were missed. All simulations shown in Figure 34 set σ2
y = 1

(i.e., the “low noise” scenario).
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Figure 34: Scenario Va: Proportion of missed long-run effects if only evaluating when
xt−1 (ARDL/ECM) or xt (LDV) is statistically significant, σ2

y = 1

As is clear from Figure 34, we almost always miss out on calculating a (true) long-run

effect when following EMW’s suggested strategy when xt has an effect of zero and when

using the ARDL specification. The LDV and ECM specifications do not have this issue.

We also miss out in short series; missing around 10 percent of long-run effects we would

have correctly calculated when T = 50, αx = 0 and we use the ARDL or ECM. Overall,

there does not appear to be much of a difference in the results as the level of autoregression

in xt varies.

Figure 35, which shows the same setup as in Figure 34 but raises the error variance in

yt to σ2
y = 5, show much larger issues with the strategy of EMW. Once again the ARDL

misses out on calculating what would have been a LRM with correct coverage when the
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effect of the lag of x is zero. But now issues also arise for both the ARDL and ECM

specifications when the lag xt effect is -1, as well as when it equals 1 (for the ARDL

only). These omissions are huge; when xt is not autoregressive, it’s lagged effect is -1,

and the level of autoregression is αy = 0.2, we miss out on over half of all long-run effects

when using the “evaluate xt−1 first” strategy, instead of just calculating the long-run

effect. Thus, while the EMW strategy appeared to be useful at minimizing Type I error

(especially for the ARDL), it drastically reduces our ability to find evidence of long-run

effects when they exist.6
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Figure 35: Scenario Va: Proportion of missed long-run effects if only evaluating when
xt−1 (ARDL/ECM) or xt (LDV) is statistically significant, σ2

y = 5

2.2.6 Scenario Vb: Yt ∼ I(0), Xt ∼ I(0), Zt ∼ I(0), and related

To add additional, more realistic complexity, consider an additional issues that this

strategy may face: additional regressors may be include that might be correlated with xt .

This could make it more likely for multicollinearity to cause us to find xt−1 (ARDL/ECM)
6Similar, slightly smaller proportions result when we plot these results as a proportion of all simula-

tions.
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or xt (LDV) statistically significant less often.

I set up this scenario as follows. Let yt be a dependent variable whose data-generating

process is:

yt = αyt−1+2xt +β2xt−1+ zt + zt−1+ εt (5)

where α = 0.2,0.8, β2 = −1,0,−1, ε ∼ N(0,σ2
y) (where σ2

y = 1,5), and now an additional

regressor zt is introduced with coefficients β3 = β4 = 1. xt and zt are themselves autore-

gressive:

xt = 0.5xt−1+ut (6)

zt = 0.5zt−1+νt (7)

and also correlated with one another, since ut ,νt ∼ N(0,Σ) where Σ =

 1 σu,ν

σu,ν 1

 and

σu,ν = 0.2,0.75. Such a covariance produces a correlation coefficient between xt and zt

of 0.2 and 0.75 as well.7 Therefore, we are able to see how having additional correlated

regressors may affect this strategy.

The results are presented in a similar manner as Scenario Vb, with σ2
y = 1 in Figure 36

and σ2
y = 5 in Figure 37. The top six plots in each figure are when σu,ν = ρx,z = 0.2, and

the bottom six are when σu,ν = ρx,z = 0.75. Results when the error variance of yt (Figure

36) is small are largely the same as those in Figure 34. The largest difference here is when

xt and zt are highly correlated. Especially when T is small, the EMW strategy will miss

out on finding LRMs when using the ARDL, ECM (and to some extent the LDV).

7Since ρx,z =
σu,ν

1−αxαz√
σ2u

1−α2x

√
σ2ν

1−α2z

=
σu,ν

1−0.52√
1

1−0.52

√
1

1−0.52

= σu,ν
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Figure 36: Scenario Vb: Proportion of missed long-run effects if only evaluating when xt−1

(ARDL/ECM) or xt (LDV) is statistically significant with additional regressor, σ2
y = 1
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Figure 37: Scenario Vb: Proportion of missed long-run effects if only evaluating when xt−1

(ARDL/ECM) or xt (LDV) is statistically significant with an additional regressor, σ2
y = 5
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2.2.7 Scenario VIa: Yt ∼ I(1), Xt ∼ I(1), and cointegrating

Turning to examining two cointegrating series, in this sub-section I explore how often

we miss out on finding LRMs when we pursue the strategy of not calculating them if

we first find that xt−1 (ARDL/ECM) or xt (LDV) are not statistically significant. The

data-generating process is the same as in the main manuscript. As above, now I calculate

the proportion of missed long-run effects using the EMW strategy.

The results from Scenario VIa are shown in Figure 38. The top four plots show

different combinations of α and the effect of xt−1 when σ2
y = 1, and the lower four plots

when σ2
y = 5. First, the only time this strategy diverges from just calculating the long-run

effect always appears to be when T = 50. The LDV appears to suffer from not finding

long-run effects when they exist when the effect of xt−1 =−1. Since it is just estimating

a single parameter for xt—and since the short-run effect of ∆xt is equal to two in the

data-generating process, this finding is likely because the positive and negative effects

are cancelling each other out. Both the ECM and ARDL models do not miss out on

any long-run effects using the proposed strategy except when the effect of xt−1 = 1, and

especially when σ2
y = 5; for instance, when α =−0.2, we find only about half of the LRMs

that we should have when using the EMW strategy.

2.2.8 Scenario VIb: Yt ∼ I(1), Xt ∼ I(1), Zt ∼ I(1), and cointegrating

Similar to the stationary case, it might be that an additional regressor affects the

performance of the strategy of not calculating the LRM unless the coefficient on xt−1

(ARDL/ECM) or xt (LDV) are not statistically significant. There appears to be some

evidence in the econometric literature of this. For instance, Hendry (1986, p. 207) explains

that, “If a model involves I(0) and I(1) variables such that the latter are cointegrated,

then there will be a ‘near-singularity’ in the second moment matrix” meaning that the

variables in the cointegrating part of the equation “will be ‘highly collinear’ and neither

need have ‘significant “t”-values’ despite being cointegrated.” If this was the case, we

might not find a significant effect until we evaluated the LRM.
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Figure 38: Scenario VIa: Proportion of missed long-run effects if only evaluating when
xt−1 (ARDL/ECM) or xt (LDV) is statistically significant

I set up this scenario the same as the above scenario, except I also introduce a unit-root

zt series. yt is now generated as:

∆yt = αyt +2∆xt +β2xt−1−∆zt + zt−1+ εt (8)

where α=−0.2,−0.8, β2 =−1,1, and both xt and zt are unit root series that are unrelated

to one another.

The results, using the same setup as in Figure 38, are shown in Figure 39. Perhaps

surprisingly, as a result of adding an uncorrelated additional regressor to the equation,

overall the proportion of missed long-run effects appears to have decreased for the ARDL

model, although risen slightly for the ECM and LDV model when the effect of xt−1 is

1. Future work should consider whether cointegrating regressors that are correlated may

change these findings.
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Figure 39: Scenario VIb: Proportion of missed long-run effects if only evaluating when
xt−1 (ARDL/ECM) or xt (LDV) is statistically significant with an additional regressor

2.2.9 Conclusion

This section examined whether the strategy of Enns, Moehlecke and Wlezien is a

feasible one. This involved first establishing whether xt−1 is statistically significant (or xt

for the LDV), and, if so, then going onto calculating long-run effects. A few important

findings stand out:

• Results for Scenario I and IV suggest that—especially if the ARDL specification is

used—spurious long-run effects are often avoided if one does not calculate the LRM

unless xt−1 is statistically significant (or xt for the LDV). Thus, if our goal is to

minimize Type I error, this strategy works very well, particularly with the ARDL.

• The issue of course is that minimizing one type of error typically comes at the cost

of another. As I have shown, when using the strategy of EMW, we are likely to miss

out on calculating long-run effects when they do exist. The very specification that

performed the best in terms of Type I error—the ARDL—had the largest issues in

regards to this.
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• The EMW strategy often leads to different conclusions based on whether an ARDL

or ECM specification is estimated. This is interesting, given that in terms of short-

and long-run effects, the two are identical (De Boef and Keele 2008). It is also

makes this strategy awkward. Should we use the ARDL model or ECM, given that

although they provide the exact same short- and long-run effects, we might end up

not calculating long-run effects more often with the former than the latter?

• That we should always be evaluating xt−1 before going onto estimate a long-run

effect is rather silly; as shown in Scenario Va and Scenario Vb, in stationary rela-

tionships it is entirely possible for the contemporaneous effect of xt to be statistically

significant while xt−1 has no effect, and the EMW strategy would almost always fail

to go onto calculate long-run effects when they exist.

• The findings that were most in favor of the EMW strategy were the results for

cointegrating series (Scenario VIa and VIb). Even so, the question remains; why

not just test for cointegration in the first place? If the analyst finds evidence for

this, they can proceed to calculate long-run effects since, by definition, they should

exist. One possible drawback here is that cointegration tests tend to be “all in”

when there are multiple regressors; either there is evidence of cointegration—for

which we conclude that all I(1) regressors are cointegrating (and thus can proceed

to calculating long-run effects), or none are (thus, we do not calculate long-run

effects and need to respecify the model). Yet even if we conclude cointegration, it

might still be the case that one individual regressor is not cointegrating and the

test just lacks the power to detect it. While approaches to parsing out individual

tests exist—such as an inconclusive ‘bounds’ critical value (Pesaran, Shin and Smith

2001; Philips 2018)—or bounds on individual effects themselves (Webb, Linn and

Lebo 2019, 2020), they are still relatively underutilized or are new approaches.

• In addition, as we know from cointegration, ECMs—as political science commonly

estimates them—“hide” the long-run effect. It is a combination of the lag of the

regressors and the adjustment parameter. While the latter is nearly always statis-
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tically significant, as shown in the Monte Carlos above, the former might not be.

Indeed, this is some of the reason as to why many cointegration tests involve the

joint significance of the regressors and the lag of yt (Pesaran, Shin and Smith 2001;

Philips 2018) . While we should not conflate cointegration with an individual re-

gressor necessarily having a long-run effect, cointegration implies that at least some

of the regressors do.

• The signal-to-noise ratio appears to be a strong driver of whether the EMW strategy

results in failing to calculate a LRM when one should. Higher noise—as proxied

in the Monte Carlos by increased variance in the residual of yt—appears to always

make the EMW strategy worse.

• The EMW strategy works quite well when T = 250 or greater. Issues, which tended

to be very large in Scenarios V and VI, only really arose when T = 50. Of course,

time series in political science applications tend to be relatively short.

The proposal of EMW is interesting, and certainly worthy of further research. Still, a

conditional strategy of testing for the significance of xt−1 (or xt for the LDV) in order to

determine whether users should move onto calculate a long-run effect seems to be overall

unwise, as I have shown using the Monte Carlos above. Instead, scholars should first

establish stationarity (and possibly cointegration) conditions, then move on to testing for

short- and long-run effects.
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