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1 Software for Estimating Threshold Models

We use Stata’s threshold command throughout this paper. R users can use the tsDyn

package to estimate the TAR model. The tsDyn package contains functions which allow

the user to compare the fit of these nonlinear models, although one cannot include multiple

covariates, only lags of the dependent variable. Readers may have also come across the

TAR command in R, which uses a Bayesian approach to modeling threshold autoregressive

time series, although we do not discuss Bayesian approaches to modeling thresholds in this

paper. In EViews, researchers can use the threshold command to specify TAR models.

2 Other Threshold-Style Models

In the main paper, we briefly mentioned a number of alternative threshold models. We

covered the simpler threshold models in the main paper because they mesh well with a

number of theories in political science, and because there are readily-available tests for

them in regards to establishing whether a threshold exists. They are also implemented

in popular software such as Stata. Below, we discuss a number of alternative threshold

modeling strategies. Many of them can be estimated in specialized time series software

such as EViews or RATS.

A popular set of non-linear autoregressive models are variants on the smooth transition

autoregressive (or STAR) model (Terasvirta and Anderson 1992; Dijk, Teräsvirta and

Franses 2002). For a single variable, yt , with no regressors, where some yt−d is thought to

be the transition variable, this is given as:

yt =(β0+ϕ1yt−1+ϕ2yt−2+ · · ·+ϕdyt−d)(1−G(yt−d,γ,c))+

(β∗
0+ϕ∗1yt−1+ϕ∗2yt−2+ · · ·+ϕ∗dyt−d)(G(yt−d,γ,c))+ εt

(1)

We could include independent variables in this equation, as well as let some other variable

determine the transition (i.e., substitute yt−d in G(.) for some exogenous variable). It is

also assumed that the residual is i.i.d.: ε ∼ N(0,σ2). The STAR model differs from the
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TAR-style models discussed in the main paper in that, while there are essentially two

regimes, STAR models allow the transition between the two regimes to occur smoothly.

There are two common specifications for the smooth transition function, G(.). One is

the logistic STAR (LSTAR) function:

G(yt−d,γ,c) = (1+ exp[−γ(yt−d − c)])−1 (2)

where γ > 0. As is clear from Equation 2, two additional parameters are estimated, γ and

c. γ can be thought of a parameter that “determines the smoothness of the change in the

value of the logistic function and, thus, the smoothness of the transition from one regime

to the other” (Dijk, Teräsvirta and Franses 2002, p. 3). c is akin to the threshold value

in a TAR model. In fact, if γ is large enough, the smooth transition becomes effectively

instantaneous, and the model becomes a two-regime TAR. Examples using LSTAR models

include Bradley and Jansen (2004), who look at excess stock market returns and industrial

production, and Hall, Skalin and Teräsvirta (2001), who model the weather processes of

El Niño.

Another common specification involves using an exponential STAR (ESTAR) function:

G(yt−d,γ,c) = 1− exp[−γ(yt−d − c)2] (3)

See Gregoriou and Kontonikas (2006), who use an ESTAR approach to model inflation

in seven countries.

A third specification (which is far less common) uses a second-order logistic function

for G(.) (Dijk, Teräsvirta and Franses 2002):

G(yt−d,γ,c) = (1+ exp[−γ(yt−d − c1)(yt−d − c2])
−1 (4)

where γ > 0, and c1 ≤ c2.

More complicated specifications for STAR models are possible, including time-varying
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STAR (TVSTAR) model (Lundbergh, Teräsvirta and Van Dijk 2003; Van Dijk, Strikholm

and Teräsvirta 2003), which allow for non-linear dynamics across time, as well as multiple-

regime STAR (MRSTAR) models (Van Dijk and Franses 1999), which allow for more than

two regimes. See Holt and Craig (2006) for an example of using a TVSTAR specification to

model hog-corn price dynamics, and Bradley and Jansen (2004) for a MRSTAR example.

3 Existing Approaches

Despite a substantial body of literature in political science considering dynamic relation-

ships, non-linear dynamic models are not a part of political scientists’ core methodological

repertoire. Approaches to accounting for non-constant effects between covariates and the

dependent variable remain disjointed if they are used at all. This is not for the absence

of non-linear modeling techniques, which are frequently employed by economists.1 What

explains this lack of usage? As Richards and Doyle (2000) point out, although many

political science theories posit non-linear relationships, they do not map onto simple non-

linear functions in the same way that economic theories do.2 Here, we focus on a class

of non-linear models that we believe are particularly relevant to political science theories:

threshold autoregressive (TAR) models.

First, we discuss two current ends of the spectrum with regard to modeling non-

linearities in dynamic data in political science research. At one end of the spectrum,

there may exist theoretical expectations about a structural break or regime shift in the

series that we can explicitly parameterize and model. At the other end, hidden Markov

processes allow us to examine the effects of some “unobservable” causes of regime shifts

in a model (Hamilton 1989). In other words, we may want these processes to inform us as

to where structural breaks occur rather than imposing some theoretical expectation. We

briefly discuss each of these approaches below, and then introduce asymmetric non-linear

models—in particular the TAR model, which falls somewhere between these two ends of
1See (Granger, Terasvirta et al. 1993) for a review of non-linear dynamic models used in economics.
2One might also note that economics typically models longer time series compared to political scien-

tists.
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the spectrum—as an alternative for modeling non-constant effects.

Interactive effects are commonplace in dynamic theories in political science, whereby

one or more variables condition the effect of another. While these interactions moderate

a variable’s effect, they often remain linear in how they are specified—e.g., the marginal

effect remains constant.3 Generally, non-linear effects have been modeled by transforming

the data to ensure linearity in the parameters, such as employing a squared term or taking

the log of a variable. However, this strategy has limited use if the non-linearity cannot

be modeled by changing the functional form through common transformations.

Other articles model asymmetries based on expectations about non-constant effects

on either side of a cut-point, which we refer to as structural break parameterization.

These cut-points are typically specified based on theory, although they may be supported

by empirical testing such as Chow tests (e.g., Clarke, Ho and Stewart 2000). However,

few papers in the literature model other forms of non-linear dynamic effects explicitly,

especially regarding the parameters on lagged coefficients, including the lagged dependent

variable. An exception is Philips, Rutherford and Whitten (2015), who allow short- and

long-run effects in their model of German party support for the four largest parties to differ

based on the party in government. They do so to test whether the effect of the evaluation

of the leader of the Liberal Party on party support is larger when the party is in coalition

compared to when it is not. Another example is by Clarke, Ho and Stewart (2000),

who find that the determinants of party support in the UK had differing long-run effects

depending on whether Margaret Thatcher or John Major was Prime Minister. A third

exception is Esarey and DeMeritt (2014), who model state-dependent processes using

the applied example of presidential approval and economic performance. The authors

model the non-constant effect of the US economy, conditional on presidential approval,

by interacting the lag of presidential approval with current economic performance. They

find that high unemployment hurts presidents the most among those with initially high

approval ratings. In other words, how quickly presidential approval declines depends on
3Of course, models with non-linear marginal effects are possible (Berry, Golder and Milton 2012, pp.

669-671).

5



how poorly the economy is doing.

While the above articles explicitly parameterize non-linearities and asymmetries in

dynamic models, a different body of literature treats these shifts as unobservable, often

modeling them as a hidden Markov process (Hamilton 1989).4 For instance, there may

be high and low conflict regimes in intra-state conflict, for which dynamic processes may

differ across the two regimes (Brandt, Freeman and Schrodt 2011). Or, the use of force by

US presidents may have undergone a structural change before and after the Second World

War (Park 2010). Non-linearity might characterize the regime transitions themselves, re-

quiring a ‘multistate survival model’ that allows for both recursive and sequential regime

changes for a single country (Metzger and Jones 2016). Freeman, Hays and Stix (2000)

and Hays, Freeman and Nesseth (2003) use Markov switching models to predict transition

probabilities between currency market equilibria as a function of different types of po-

litical institutions and information; both articles show that how politics shapes currency

market equilibration depends on how democratic a country is and how transparent its

policymaking is.

While structural break parameterization and hidden Markov models are reasonable

modeling approaches, there are models that bridge the gap between them in two ways.

First, we can explicitly hypothesize about where non-linearities lie, similar to parametric

approaches. Second, we can obtain parameter estimates through a data-driven approach

similar to Markov modeling and the changepoint literature. This threshold modeling

approach is more flexible than the fully-parameterized non-linear model, and, in some

cases, more reflective of the underlying data-generating process. There are a variety of

important threshold effects in autoregressive distributed lag models, which we discuss

below.
4For a review of the Markov modeling approach to modeling non-linear dynamics, see (Quandt 1972;

Goldfeld and Quandt 1973; Hamilton 1989, 1993, 1995).
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4 Modeling Asymmetric Effects

Modeling the asymmetric effects of regressors on the dependent variable is perhaps more

familiar to readers, and similar to some of the examples provided above (e.g. Soroka 2006;

Lipsmeyer 2011). This involves explicitly parameterizing or setting the point at which

the asymmetries in effects occur in either the independent or dependent variable.

Asymmetries in the Independent Variable

Consider a simple autoregressive distributed lag, ARDL(1,1), with a single weakly exoge-

nous regressor, xt :

yt = α0+α1yt−1+β0xt +β1xt−1+ εt (5)

where εt ∼ N(0,σ2). It is straightforward to interpret the effects of xt on yt (c.f. De Boef

and Keele 2008). The contemporaneous effect of xt on yt is given by β0; one period later

this effect is β1. The long-run effect is the total effect that a change in xt has on yt , and

is given by: β0+β1
1−α1

.

While Equation 5 is flexible in terms of dynamics, it assumes that xt has the same

effects on yt , no matter the level of xt . As discussed above, asymmetries may be present;

for instance, if xt falls above or below some value, its effect on yt may differ. To incorporate

this, consider instead the following data-generating process for yt :

yt =


α0+α1yt−1+β∗

0xt +β∗
1xt−1+ εt , if xt−1 ≤ ω

α0+α1yt−1+β0xt +β1xt−1+ εt , if xt−1 > ω
(6)

We could write Equation 9 in a single step by adding Dt , a dichotomous function where
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Dt = 0 if xt−1 > ω, and equal to one if xt−1 ≤ ω.5 The resulting model can be written as:

yt = α0+α1yt−1+β0(1+Dtγ0)xt +β1(1+Dtγ1)xt−1+ εt (7)

where (β0+γ0 = β∗
0) and (β1+γ1 = β∗

1). The short-run effect when xt is above the threshold

value ω is still β0, and the long-run effect β0+β1
1−α1

. However, when xt falls on or below

the value ω, the contemporaneous effect becomes β0+ γ0, and the long-run effect is now
(β0+γ0)+(β1+γ1)

1−α1
. In other words, the short- and long-run dynamics can change dramatically

based on the value of xt .6 As an example, we might expect that more negative economic

growth has an effect larger in magnitude on the approval rating of the incumbent than a

similarly-sized increase in positive economic growth; this would imply that ω = 0, which

would allow the effect of positive economic growth to differ from the effect of negative

economic growth.

A similar approach could also be taken for modeling first-differences (i.e., changes).

For example, in examining the effect of changes in unemployment on public support for

an incumbent, it is plausible that positive changes—increases in unemployment—might

hurt incumbent support more than negative changes—decreases in unemployment—help

the incumbent:

yt =


α0+α1yt−1+β∗

0∆xt + εt , if ∆xt−1 ≤ ω

α0+α1yt−1+β0∆xt + εt , if ∆xt−1 > ω
(8)

As an extension, analysts could also add asymmetries in the lagged dependent variable

(caused by xt falling on either side of ω), if they thought that the rate of autoregression in

the dependent variable itself might change based on xt .7 For instance, public mood about

5In other words, the function is: Dt =

{
1, if xt−1 ≤ ω
0, if xt−1 > ω

6While we consider “self-exciting” asymmetries—in other words, asymmetries in xt that occur when
its own value falls above or below a particular value—we could just as easily let the effect of xt on yt be
asymmetric based on the value of some other variable. There may or may not be a theoretical reason
to include this variable in the model, although it typically makes sense to do so. Since this falls under
interactive specifications more generally, we focus mostly on these self-exciting asymmetries, although
the same intuition discussed below applies.

7e.g.,

yt =

{
α0+α∗

1yt−1+β∗
0xt +β∗

1xt−1+ εt , if xt−1 ≤ ω
α0+α1yt−1+β0xt +β1xt−1+ εt , if xt−1 > ω

(9)
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the economy may be less persistent when the economy is doing poorly than when it is

doing well. Regardless, all approaches above are possible ways to relax the assumption

that xt—or the change in xt—always has a homogenous effect on yt .

Asymmetries in the Dependent Variable

So far, we have considered asymmetric effects determined by the independent variable.

It may also be the case that the level of yt itself determines this asymmetry. That is,

we might expect that “self-exciting” asymmetries characterize values of the dependent

variable. Moreover, the dynamic effects of the dependent variable may also change, such

that (using the notation from our example above):

yt =


α0+α∗

1yt−1+β∗
0xt +β∗

1xt−1+ εt , if yt−1 ≤ ω

α0+α1yt−1+β0xt +β1xt−1+ εt , if yt−1 > ω
(10)

Here, the short- and long-run dynamics may change based on the value of yt . Since yt is

typically continuous, it is a bit harder to parameterize ω, although plausible values might

be zero, or the mean of the series. As discussed in the previous section, we could also

model first-differences, or changes, in the the dependent variable based on asymmetries

in previous changes in the dependent variable.

4.1 STAR Threshold Models

Asymmetric thresholds are also possible, such that the autoregression is larger or

smaller on the upper and lower thresholds. Third, a variety of other models exist that

allow for a richer set of dynamic effects to take place on either side of the threshold, such as

the smooth transition autoregressive (STAR) (Terasvirta and Anderson 1992), exponential

or logistic STAR (ESTAR and LSTAR) (Tong 2012). Below we show the most commonly

used models, as well as discuss estimation strategy, in an applied example. For brevity,
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and because models such as the E-STAR and L-STAR are less common, we discuss them

more fully in the Supplemental Information. For our example below, we apply the TAR

and Band-TAR, which are more frequently applicable to political science theories.

5 Testing for Non-Linearities

Before estimating any non-linear model, it is advisable to test whether a non-linear data-

generating process is plausible. There are a number of portmanteau-style tests for this.

The McLeod and Li (1983) test examines correlations between squared residuals—from a

standard linear model—and its successive lags by forming a Lung-Box Q statistic:

Q = T (T +2)
m

∑
i=1

ρ2
i

T − i
(11)

where ρi is the correlation coefficient between εt and εt−i (Enders 2010, p. 435).8 The test

statistic Q is asymptotically distributed χ2 with m degrees of freedom. Rejecting the null

hypothesis provides evidence of non-linear effects, although it does not specify the type of

non-linearity present. Using the saved residuals from the standard ARDL model in Table

1, Model 1 in the main paper, we reject the null hypothesis of linearity across all but the

first lag (for up to five lags), as shown in Table 1. This suggests that a non-linear process

is present.

As an additional test, we rely on the Regression Error Specification Test (RESET) to

test a null hypothesis of linearity against the alternative of non-linearity, again without

specifying the particular form of non-linearity. Once more using the residuals from the
8The McLeod and Li (1983) test can also be specified as:

ε̂2t = α0+α1ε̂2t−1+ · · ·+αnε̂2t−n +νt (12)

which is the same as the ARCH-Lagrange Multiplier test (Enders 2010, p. 436). The null hypothesis is
that α1 = α2 = · · · = αn = 0. The test statistic is distributed χ2 with n degrees of freedom, although an
F-test can be used in small samples.
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Table 1: Results Suggest that a Non-Linear Process is Present

Test Value

McLeod and Li

Lag i = 1 1.67
Lag i = 2 6.72∗

Lag i = 3 10.53∗

Lag i = 4 12.09∗

Lag i = 5 14.33∗

RESET H = 3 3.98∗

H = 4 3.63∗
H = 5 2.72∗

Note: ∗ p < 0.05. H0 : linear data-generating process. Q statistics shown for McLeod and Li test, and F
statistics shown for the RESET.

linear regression in Table 1, Model 1 in the main paper, we estimate:

ε̂t = δδδzt +
H

∑
h=2

αhŷh
t (13)

where H is usually 3 or 4, ŷt are the fitted values from the linear model, and zt is a matrix

of all regressors from the linear model. Since the variables in Equation 13 should have low

explanatory power of the residuals, so the test consists of an F-test that α2 = · · ·= αH = 0,

with standard critical values from the F-statistic. The alternative hypothesis is non-

linearity. As shown in Table 1, we reject the null hypothesis of linearity across plausible

values of H. Overall, given the results of the McLeod and Li and RESET tests, we

have strong evidence to support a non-linear modeling strategy. For further discussion

of non-linearity testing, see Granger, Terasvirta et al. (1993), Diks and Manzan (2002),

andFrühwirth-Schnatter (2006).
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