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Abstract

Monte Carlo simulations are commonly used to test the performance of estimators
and models from rival methods under a range of data generating processes. This tool
improves our understanding of the relative merits of rival methods in different con-
texts, such as varying sample sizes and violations of assumptions. When used, it is
common to report the bias and/or the root mean squared error of the different meth-
ods. It is far less common to report the standard deviation, overconfidence, coverage
probability, or power. Each of these six performance statistics provides important,
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three prominent papers, we demonstrate the utility of our approach and provide new
substantive results about the performance of rival methods.
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One of the great strengths of Political Science as a discipline has been our enthusiasm

for embracing new methods for testing hypotheses. Whenever the use of a new method

is proposed, one of the first questions that researchers ask is how it performs relative to

existing methods. To make such assessments, researchers have relied heavily on perfor-

mance statistics—e.g., root mean squared error (RMSE)—of estimators or models from

rival methods in Monte Carlo simulations. This approach of comparing rival methods

has become pervasive in political methodology and is a core component of some of the

most highly cited papers in all of Political Science (e.g. Beck and Katz, 1995; King and

Zeng, 2001; Keele and Kelly, 2006; Plümper and Troeger, 2007)

While papers taking this approach have provided a wealth of helpful advice to applied

researchers, we argue that this advice has often been based on too little information. As

we demonstrate in our review of the literature below, many papers that use Monte Carlo

simulations to make comparisons between rival methods use only one or two perfor-

mance statistics, and rely most heavily on measures of bias and RMSE. While these are

excellent criteria for assessing relative performance, we argue that other easily calculable

performance statistics such as standard deviation, overconfidence, coverage, and power

often should also be reported. Doing so will allow researchers to make more informed

decisions about which method(s) are preferred under different circumstances.

We write for two audiences: those who wish to produce Monte Carlo simulations to

examine the relative performance of different methods, and those who wish to read the

results of Monte Carlo simulations to learn about the relative performance of different

methods. For the first group, we provide advice about the benefits of different Monte

Carlo performance statistics. There is a seemingly endless combination of such statistics

to choose from—such as bias and RMSE, or bias and standard deviation. We provide a

way to think through what can be learned from various combinations—e.g., if an estima-

tor shows no evidence of bias, we explain what might then be gleaned from the standard

deviation. Our paper also helps the second group, readers of Monte Carlo work, to better
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understand the tradeoffs of various performance statistics, and will encourage them to

think more critically about the conclusions that can be reached from Monte Carlo sim-

ulations. In our literature review, we show there is tremendous variation in what gets

reported. For these readers, we provide useful definitions of the six most common per-

formance statistics. We then offer a structured way to think about what gets reported,

what might be missing, and how this should influence our decisions about which estima-

tor or model to use.

To demonstrate the advantages of our recommended approach, we replicate parts of

three prominent recent articles that use Monte Carlo experiments to guide researchers

about their choice of methods. In each case, our replication demonstrates that using a

broader set of performance statistics provides new insights into the relative merits of

rival methods. In two of these instances (Clark and Linzer, 2015; Wilkins, 2018), we find

that the recommended method in the original article may not always be preferred. In the

third (Hanmer and Kalkan, 2013), although our evaluation of the best performing method

remains the same as the one recommended in the original article, we demonstrate that the

best performing method is problematic for statistical inference.

We begin with an overview of the use of Monte Carlo experiments in Political Sci-

ence and present our argument for when and why researchers should consider different

performance statistics when evaluating the relative utility of different methods. We then

review the use of performance statistics in papers published in the major Political Science

journals and discuss what is missing. We replicate parts of three prominent articles in

Political Science and conclude with a discussion of how our recommendations should be

used in future research.

Monte Carlo experiments and performance statistics
Monte Carlo simulations are employed across a broad range of academic and applied

disciplines.1 Political Science researchers, like those in other fields (e.g., Hastie, Tibshi-

1For general overviews of Monte Carlo methods, c.f., Barbu and Zhu (2020) or Tho-
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rani and Friedman, 2009; Robert and Casella, 2010), have used Monte Carlo methods for

two main purposes—first, for evaluating the performance of rival methods, and second,

for the estimation and/or interpretation of statistical models (e.g., Gill, 2014; Jackman,

2009). In this paper, our focus is on the use of Monte Carlo simulations, also referred to

as “Monte Carlo experiments,” for the evaluation of the performance of rival methods.

Generically, we can think of Monte Carlo experiments as a staged competition be-

tween two or more rival methods of estimating the same quantity of interest, which we

will label θ.2 The standard practice is for θ to be fixed and the data repeatedly simulated

from one or more user-created stochastic data generating processes (DGPs). These DGPs

are usually set up to mimic circumstances that applied researchers are likely to encounter.

For each sample of data, the rival methods are then used to calculate an estimator, θ̂.3

Performance statistics are different ways to evaluate the ability of each rival method to

accurately reflect the properties of θ across n simulations.

In the remainder of this section, we define and discuss the crucial aspects of the six

performance statistics that we recommend for reporting (bias, standard deviation, over-

confidence, RMSE, coverage, and power). For each performance statistic, we provide a

definition, the relevant formulae (if needed), and a short summary of the statistic’s im-

portance.

Bias, standard deviation, and overconfidence
mopoulos (2012).

2We refer to θ as a “quantity of interest” to reflect the fact that, while some researchers

are focused on the estimation of parameters, others are focused on the performance of

test statistics (Philips, 2018) or other quantities of interest such as long-run multipliers in

time series analyses (Webb, Linn and Lebo, 2020) or indirect effects in spatial analyses

(Whitten, Williams and Wimpy, 2019).
3Rival methods include different models and estimators. For ease of exposition, we use

the term “estimators” from here on so that we do not need to repeatedly write “models

and estimators.”
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In Figure 1, we provide a graphical illustration of bias, SD, and overconfidence for a

hypothetical quantity of interest, θ, and estimator, θ̂. We depict the results from a set of

hypothetical simulations for an estimator θ̂ of the true parameter value θ. The gray bars

depict the density of the estimated values of θ and the black vertical line in the center of

the figure indicates the expected or average value of θ̂.

0 E( ̂θ) θ
estimated by 
the mean of 
simulated 
parameter 
estimates

true 
parameter 

value

-1SD +1SDSD: square root of 
average squared 

deviation from E( ̂θ )

Overconfidence: 
ratio of SD to 

E[SE] Bias: 
difference 
between 

E( ̂θ) θand

Figure 1: Illustration of bias, SD, and overconfidence

Bias

Definition and formulae: As demonstrated in Figure, 1, the bias of an estimator for a quan-

tity of interest is defined as the difference between the expected value of the quantity from

repeated sampling and the value of the quantity in the DGP. When E(θ̂) ̸= θ, as in the

figure, the estimator is biased.

Definition: Bias[θ̂] = E[θ̂ − θ] = E[θ̂]− θ (1)

Calculation: B̂ias[θ̂] =
1
n

n

∑
i=1

(θ̂i − θ) (2)

Bias is typically calculated as the average deviation of the estimates of the quantity of in-
terest from the DGP value. This average is calculated across the simulations. While “aver-
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age bias” is by far the most commonly calculated quantity, others are possible, including

median bias (c.f., Pickup and Hopkins, 2020), which is useful when the distribution of the

quantity of interest is not normally distributed (e.g., when calculating non-linear combi-

nations of parameter estimates for long-run effects in time series). Researchers may also

plot the distribution of each estimate’s distance from the true DGP value (c.f., Helgason,

2016, who presents box-whisker plots depicting the distribution of absolute bias from

rival estimators in his simulations).

Importance: Calculating bias approximates whether using an estimator in an empirical

application would, on average, across applications, produce estimates that are equal to the

quantity of interest.4

Standard deviation

Definition and formula: The standard deviation (SD) of an estimator is the square root of the

variance of estimates. An estimator has a smaller variance than another if its dispersion

around its expected value is less than that of the other estimator. As depicted in Figure

1, this performance statistic measures the square root of the average squared deviation of

the values of θ̂ around E(θ̂).

Definition: SD[θ̂] =
√

E[(θ̂ − E[θ̂])2] (3)

Calculation: ŜD[θ̂] =

√
1
n

n

∑
i=1

[
(θ̂i −

1
n

n

∑
i=1

θ̂i)2
]

(4)

The variance is calculated as the average squared deviation of the estimates from the
average estimate. The SD is calculated as the square root of this value.

Importance: Because researchers usually encounter only one sample from the population,

SD informs us how close that quantity is likely to be to E[θ̂], which itself may or may not

4When making relative comparisons of bias across competing estimators, there may

not always be an estimator that is unbiased. Thus researchers prefer the estimator which,

all else equal, has the lowest bias. For another discussion of the importance of bias, see

Carsey and Harden (2014).
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be biased (e.g., E[θ̂] may not equal θ). This measure is most useful as a relative comparison

between the SD of two or more rival estimators.

Overconfidence

Definition and formula: Overconfidence is used to assess the accuracy of estimated stan-

dard errors. As we depict in Figure 1, overconfidence is the standard deviation of the

estimates divided by the expected value of the estimated standard errors for a quantity

of interest.5

Definition: Overconfidence(θ̂) =
SD(θ̂)

E
[
s.e.(θ̂)

] (5)

Calculation: ̂Overconfidence(θ̂) =
ŜD[θ̂]

1
n ∑n

i=1 s.e.(θ̂i)
(6)

Overconfidence is calculated by dividing the calculated SD by the average calculated

standard error, across the n simulations. A value of 1 implies accurate standard errors, a

value greater than 1 implies overconfidence, and a value less than 1 implies underconfi-

dence.

Importance: Most empirical applications of estimators involve statistically testing a theo-

retically derived hypothesis against a null hypothesis. In these applications, rejecting the

null hypothesis provides evidence in support of the researcher’s theory.6 Overconfidence

5Researchers may alternatively calculate standard error bias, which is defined as

E
[
s.e.(θ̂)

]
− SD(θ̂). This would be used in the same situations as the formula in Equa-

tion 5. See the Supplemental Materials (SM) for a discussion on the relationship between

our measure of overconfidence and others in the literature (e.g., Franzese and Hays, 2007;

Beck and Katz, 1995)
6Other empirical applications include theories that predict a null result. In such cases,

failing to reject the null hypothesis provides evidence for the researcher’s theory. See

Rainey (2014) for an explanation on how researchers can evaluate theories that predict a

null effect.
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means that the standard errors are underestimated, which results in smaller confidence

intervals that increase the probability of rejecting the null hypothesis when it is true (i.e.,

we find support for the theory when it is not true). This scenario can also be described as

an increase in Type 1 errors, which are defined as incorrectly rejecting a true null hypoth-

esis. Underconfidence means that the standard errors are overestimated, which results in

larger confidence intervals that decrease the probability of rejecting a false null hypothe-

sis. This scenario can also be described as an increase in Type 2 errors, which are defined

as incorrectly failing to reject a false null hypothesis.

Root mean squared error, coverage, and power

0 E( ̂θ) θ

}
individual 
simulated 
parameter 
estimates 
with 95% 

CIs

Power: 
proportion of 

CIs that 
exclude 0 
(false null)

-1SD +1SD

Coverage: 
proportion of CIs 

that include   θ

RMSE: square root 
of average squared 

deviation from θ

Figure 2: Illustration of RMSE, coverage, and power

We illustrate our three other recommended quantities of interest, RMSE, coverage, and

power in Figure 2. As in Figure 1, we show the density of the estimates of θ with the

gray bars. The dotted line on the left side of this figure shows the value of the false null

hypothesis, specified as zero, and the dotted line on the right side of this figure shows
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the DGP value of θ. The horizontal confidence intervals show a series of results from

hypothetical simulations for an estimator, θ̂.7 Under the histogram, for eight example

estimates (θ̂), we show the point estimate with a 95% confidence interval to illustrate how

coverage and power are defined.

Root mean squared error

Definition and formula: The root mean squared error is a measure of the average error of an

estimator.8 As shown in Figure 2, it is defined as the square root of the expected value of

the squared differences between the estimates and the true value. Alternatively, it can be

expressed as the square root of the sum of squared bias and the variance of an estimator.

RMSE is the combination of bias and SD, so lower values of RMSE are preferred.

Definition: RMSE[θ̂] =
√

E[(θ̂ − θ)2] =
√

Bias(θ̂)2 + SD2(θ̂) (7)

Calculation: R̂MSE[θ̂] =

√
1
n

n

∑
i=1

[
(θ̂i − θ)2

]
(8)

RMSE is calculated by taking the square root of the average squared difference between
the estimates and the true value.

Importance: As is the case with SD, RMSE is most useful for relative comparisons between

two or more estimators. When evaluating the performance of rival estimators, researchers

may find themselves with estimators that vary in terms of bias and variance and thus face

a bias-variance tradeoff. E.g., in the presence of unobserved time-invariant unit hetero-

geneity that is correlated with the regressors, the fixed effects estimator is unbiased but

has a larger SD and the random effects estimator is biased but has a smaller SD (Clark

and Linzer, 2015). As a result, researchers may use RMSE to evaluate whether the losses

7As discussed in the SM, power is dependent on the specification of the null hypothe-

sis, most commonly 0 as shown in Figure 2.
8It is noteworthy that RMSE is only one possible weighted combination of bias and

variance. Researchers may choose other weighted combinations of bias and variance

based on their requirements.
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in accuracy from one estimator are larger than those from other estimators.9

Coverage Probability

Definition: As we illustrate in Figure 2, coverage probability is the proportion of times the

confidence intervals of the estimator encompasses the true DGP value. It is calculated as

the proportion of simulated confidence intervals that contain the DGP value. If the eight

confidence intervals depicted in Figure 2 were the only simulations that had been carried

out, the coverage probability would be 0.375 since only three of the depicted intervals

include the dotted line for θ. In practice, researchers typically would conduct many more

than eight simulations and thus have many more than eight confidence intervals. If the

95% confidence interval is correctly sized, we expect that in a large number of repeated

samples, the constructed 95% confidence intervals will not overlap with the true effect

5% of the time (Jackman, 2009).10 Thus, one should expect a coverage probability of

0.95 if they are using 95% confidence intervals. Coverage probabilities larger than 0.95

mean that the estimated confidence intervals encompass the true null hypothesis more

often than expected, while coverage probabilities less than 0.95 mean that the estimated

confidence intervals encompass the true null hypothesis less often than expected.

Importance: High (low) coverage probability means a lower (higher) Type 1 error rate

(Pr(Type 1 error) = 1−Coverage). However, higher coverage probability is not always

better.11 Researchers should prefer coverage probabilities closer to the confidence level

(e.g., a 0.95 coverage probability for the 95% confidence level). Coverage probability in-

forms researchers about the probability that an estimator will reject the true null hypoth-

9Since RMSE is a function of both bias and SD, it may seem redundant that we recom-

mend researchers calculate all three performance statistics. See Sections 3 and 4 below for

a discussion of why calculating all three performance statistics is important.
10In the SM we provide some further details on the relationship between coverage prob-

ability, power, and relevant researcher choices of hypothesis test specification.
11E.g., a coverage probability greater than 0.95 at the 95% confidence level indicates

overestimated standard errors.
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esis and incorrectly conclude in favor of the alternative hypothesis (Type 1 error).

Power

Definition: The power of an estimator is the proportion of instances in which the null

hypothesis is correctly rejected. In other words, as we depict in Figure 2, power is the

proportion of instances in which the confidence intervals reject the false null hypothesis.

It is calculated as the proportion of simulated confidence intervals that do not contain

the null hypothesis. If the eight confidence intervals depicted in Figure 2 were the only

simulations that had been carried out, the power would be 0.875 since only one of the

eight confidence intervals includes the dotted line for 0, the false null hypothesis value

in this hypothetical illustration. As we noted in our discussion of coverage probability,

researchers typically would conduct many more than eight simulations and thus have

many more than eight confidence intervals.

Importance: Low power translates into a high incidence of Type 2 errors (Pr(Type 2 error)

= 1−Power). Failing to reject the null hypothesis when it is false results in incorrect in-

ferences about the plausibility of the alternative hypothesis. As a result, all else equal,

it is important that an estimator has high power. While coverage probability informs us

whether we can be confident that an estimator will not incorrectly reject the null hypoth-

esis when it is true, power informs us as to whether the estimator will correctly reject the

null hypothesis when it is false.

Applying the performance statistics
The value of the six performance statistics that we defined in the previous section will

vary across applications. Nonetheless, it is useful to think about the value of the perfor-

mance statistics that we recommend in general terms and, in particular, to think about the

value of the different performance statistics in combination with each other. To do this,

we divide our recommended performance statistics into two groups of three.

The first group of performance statistics—RMSE, and coverage probability and power—

evaluates an estimator’s performance on point estimates and inference. The second group
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Evaluation
Provides information about performance: 
RMSE, or coverage and power

1

Diagnosis
Determines the source of performance issues: bias and 
standard deviation (SD), or bias, SD and overconfidence

2

Properties of interest

Point estimates Inference

RMSE

Bias + SD

Coverage Power

Bias + SD + Overconfidence

Figure 3: Information provided by performance statistics

of performance statistics—bias, SD, and overconfidence—helps to diagnose why an esti-

mator has large or small average error (RMSE), why it has high or low coverage proba-

bility, and why it has high or low power. We recommend that researchers begin by using

the first group of performance statistics to evaluate how an estimator performs in terms of

point estimates and inference, and then, if needed, diagnose and understand these results

using the second group of performance statistics.12

Evaluate
12This does not necessarily mean starting with RMSE. E.g., if a study compares the per-

formance of different robust standard errors (SE) and we know that all of the estimators

under consideration are unbiased, then we do not recommend starting with RMSE. We do

note that coverage and power are important statistics to understand the performance of

such robust SEs. We also note that if there is poor coverage and/or power, then overcon-

fidence (and SD) can shed light on why this is the case. On the other hand, if simulations

show no problems with power and coverage (or they are good enough that we are com-

fortable with the performance of the robust SE), then we can be confident there are no

problems with overconfidence.
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As depicted in Figure 3, we divide the evaluation of estimator performance into point

estimates and inference. To be clear, we expect most producers and readers of Monte

Carlo experiments to be interested in both the point estimate and inference performances

of estimators.

• Point estimates: RMSE is a summary measure of how much point estimates differ

from the true DGP value due to the systematic over- or under-estimation of an es-

timator (bias) and the sampling variability (SD). It thus summarizes overall how far

off the estimate will be, on average, from the true value. This is valuable informa-

tion when comparing the strengths and weaknesses of different estimators for point

estimates.

• Inference: Coverage probability and power inform researchers whether Type 1 and

Type 2 errors will be inflated, respectively. These are both important pieces of in-

formation when comparing the strength and weaknesses of different estimators for

hypothesis-testing inferences.

Diagnose

The second step in Figure 3 is to diagnose the sources of interesting performances from

our evaluation step. While RMSE, coverage probability, and power provide useful sum-

maries of how well the estimator will perform with respect to point estimates and hypothesis-

testing inferences, they obscure exactly why an estimator performs well or poorly. This

is because they are each a function of multiple fundamental properties of the estimator.

Below, we describe how bias, SD, and overconfidence help diagnose poor performance

with respect to RMSE, coverage probability, and power.

RMSE: If the RMSE is small, this tells us the bias and SD are small.13 However, if the

RMSE is not small, it does not reveal if this is caused by large bias, large SD, or both. It

is also possible that two estimators will have a similar RMSE even if their bias and SD

13By “small,” we generally mean close enough to 0 that we expect estimates to be within

the precision of our original measures.
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are substantially different; again, whether bias and SD differ across estimators is hard

to know without directly calculating these two performance measures. Examining bias

is valuable because it tells us on average how well an estimator will perform. A large

bias means that an estimator will perform poorly even if the researcher has taken steps

to minimize random error, e.g. with a large sample size. However, this has limitations.

Even if the estimates from repeated sampling are equal to the true value in the DGP on

average, this does not imply that the quantity estimated from one sample is going to be

equal to or close to the true parameter value. In reality, researchers usually encounter

only one sample drawn from the underlying population. Fortunately, the SD informs us

whether the estimated quantity of interest from a given sample is likely to be closer to or

farther away from the average estimate, although it cannot tell us if this average estimate

will be close to the true value. Therefore, in order to diagnose the source of large RMSE in

the point estimate of an estimator, both bias and SD need to be examined in combination.14

Coverage Probability and Power: The location and width of confidence intervals are a

function of bias and standard errors, the latter of which are estimates of SD. As such,

both power and coverage probability are determined by bias, SD, and overconfidence,

or some combination of the three. Note though that SD is probably the least valuable of

these three statistics when considering coverage probability. If there is no bias, the de-

gree of SD will have no effect on coverage probability, except to the extent that it affects

overconfidence; underestimated standard errors will result in a lower coverage proba-

bility. Consider another scenario in which there is bias. A larger SD might mitigate the

effects of bias but only inadvertently. E.g., if your estimate is very far off from the true

parameter value, the confidence interval may still include the true parameter if there is a

14It is true that bias can be calculated from SD and RMSE, and SD can be calculated

from bias and RMSE, but this involves a substantial effort on behalf of readers. Further,

because RMSE is a nonlinear combination of SD and bias, it is only by reporting both SD

and bias that the relative contribution of each to RMSE is clear.
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great degree of reported uncertainty in your estimate. In other words, the SD will not be

a source of poor coverage probability but it might explain why a badly biased estimator

may still have a good coverage probability. With respect to power, smaller SD and/or

overconfidence should increase power but the latter does so by incorrectly estimating the

precision of the estimate. Holding all else constant, attenuation bias (0 < |E[θ]| < |θ|)

will lower power. Consider a scenario in which there is attenuation bias, high SD, and

underconfidence. In this case, power will be less in contrast to when bias is absent. Infla-

tionary bias (0 < |θ| < |E[θ]|) will increase power but at the expense of a poor estimate,

on average. Overall, in order to diagnose the source of problems of inference due to poor

power and/or coverage probability, we recommend examining bias, overconfidence, and

SD in combination.

Choosing which performance statistics to report

Given the value of the measures for evaluating and diagnosing the performances of rival

estimators, we recommend the reporting of all six. We recognize, however, that journal

space is limited, and that some authors and journal editors are inclined to hold the line

on the increasingly large supplemental materials documents that accompany published

papers. With this in mind, we provide a guide on which performance statistics to report:

1. Evaluate the estimators on RMSE, coverage probability, and power. Use this to iden-

tify estimators that perform poorly and differently with respect to point estimates

(RMSE) and/or inference (coverage probability and/or power). If the estimators

perform well and/or similarly on one or more performance statistics, those results

need only a brief mention.

2. Diagnose the estimators that perform poorly and/or differently on RMSE, cover-

age probability, and power, using the appropriate combination(s) of bias, SD, and

overconfidence, as per Figure 3. If the estimators perform well and/or similarly,

we recommend a brief summary of these results. Otherwise, if the estimators per-

form poorly and differently across these diagnostic performance statistics, then we
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recommend that researchers present the results of these diagnostics in more detail.

We recognize that oftentimes the above guide will lead to the reporting of all six perfor-

mance statistics. However, this is not always the case. E.g., consider Philips (2021), who

generates two independent unit roots in one of his Monte Carlo experiments and com-

pares the performance of three time series model in terms of Type 1 error rates of the long-

run effects—LDV, ECM, and ADL(1,1).15 He finds all three models perform similarly, and

poorly, in terms of the coverage probability of the long-run effect. Based on our recom-

mendations, he should summarize the results for coverage probability briefly in text, e.g.,

“I find that all three models perform similarly with a rejection rate of around 0.2,” and

then present the diagnostic performance statistics—bias, SD, and overconfidence—that

result in such Type 1 error findings using figures and/or tables.

When presented with a marginal choice between reporting all six performance statis-

tics and saving journal/appendix space, we believe that, in an era in which replication

files and online appendices are the norm, the cost of reporting all six performance statis-

tics is outweighed by the benefit of providing a more comprehensive understanding of

an estimator to readers. As we demonstrate later in this paper, when examining all six

performance statistics, we can learn novel and important things about estimators that

may lead to different conclusions about the preferred estimator than those of the original

author(s). Before turning to these replications, we present a review of current practices

and what is missing.

Patterns of reporting performance statistics
In order to assess the degree to which our recommended performance statistics are cur-

rently being used by Political Science researchers in their Monte Carlo simulations, we

had two research assistants each code every published article in the American Journal of Po-

litical Science, the American Political Science Review, the Journal of Politics, Political Analysis,

15LDV: yt = α + ϕyt−1 + β1xt + ϵt, ECM: ∆yt = α + ϕyt−1 + β1∆xt + β2xt−1 + ϵt, and

ADL(1,1): yt = α + ϕyt−1 + β1xt + β2xt−1 + ϵt.
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and Political Science Research and Methods from 2006 to 2016 that contained the keywords

“Monte Carlo” and/or “simulation.”16

Performance Statistic
RMSE Coverage/ Over- Power/ Pattern Missing

Bias or MSE Type 1 SD confidence Type 2 % (Unknown)
B 12.7 average error and one source; inference problems and two sources
B R 9.9 one source of average error; inference problems and two sources

R 8.5 sources of average error; inference problems and their sources
B C 7.0 average error and one source; power; two sources of inference problems
B S 5.6 average error; inference problems and one source
B C P 5.6 average error and one source; two sources of inference problems
B C S 5.6 average error; power and one source of inference problems
B R O 5.6 one source of average error; inference problems and one source
B O 4.2 average error and one source; inference problems and one source
B S O 4.2 average error; inference problems
B R C 4.2 one source of average error; power; two sources of inference problems

85.9 45.1 36.6 29.6 23.9 19.7 Overall
use

Table 1: The most common patterns of reporting performance statistics in major Political
Science journals

Notes: The letters in each row indicate that that particular performance statistic was re-
ported for studies referenced in that row. B–bias, R–RMSE, C–coverage probability, S–SD,
O–overconfidence, P–power. See the SM for the full table of reporting patterns.

To get a sense of which performance statistics are being reported and how they are

being reported together, we present the most common patterns of reporting for our rec-

ommended performance statistics in Table 1.17 Each row between the two horizontal

lines in Table 1 depicts a different combination of performance statistic reporting that we

found in our coding, listed in order from the most to least common. As we can see from

this table, the modal pattern was to report only bias while the second most popular pat-

tern was to report both bias and RMSE. Looking at the bottom row of Table 1, we can see

that in terms of overall use, bias was by far the most reported performance statistic, being

16Since publication of Political Science Research and Methods began in 2013, we coded

2013-2016 for that journal. We coded all Monte Carlo simulations that were presented as

a part of published papers and in appendices that appeared as a part of the volume in

which they were published; see the SM for details.
17See the SM for the full table and additional details. We also found a very small num-

ber of papers which reported performance statistics other than those listed in Table 1.
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present in 85.9 percent of the studies, followed by RMSE or mean squared error (MSE),

coverage probability/Type 1 error rate, SD, overconfidence, and power/Type 2 error rate.

In the far right column of Table 1, we provide a short summary of what is missing

or unknown when researchers use each pattern of reporting based on our discussion in

the previous section. Note how adding bias or SD to RMSE provides additional infor-

mation. Adding each independently tells us about how one or the other contributes to

RMSE, but adding both bias and SD to RMSE gives a much more complete picture of the

sources of RMSE. Because coverage probability and power are nonlinear combinations of

bias, SD, and overconfidence, it is even more important to provide all three determinants

of coverage probability and power to understand the sources of these important inferen-

tial properties. Last, we also recognize that tables are not the only way to report Monte

Carlo results; some researchers (c.f., Honaker, Katz and King, 2002; Esarey, 2016; Helga-

son, 2016) visually show more than one quantity of interest—for instance bias as well as

percentiles of the estimates and outliers—through the use of box-whisker plots.

Three replications
As we demonstrated in the previous section, Political Science researchers usually use

three or fewer performance statistics in their Monte Carlo experiments. While Table 1

provides a brief summary of what is missing or unknown with each of the observed pat-

terns, in this section we take a closer look by using the diagram presented in Figure 3 to

replicate and extend the analyses of three prominent articles that use Monte Carlo simula-

tions to assess the relative utility of different estimators. In each case, the use of additional

performance statistics would have changed, refined, or more strongly supported their

conclusions regarding the desirability of different estimators. We first replicate Clark and

Linzer (2015) and provide a full example of following our recommendations. Our second

and third replications are of Wilkins (2018) and Hanmer and Kalkan (2013) respectively.

We report only a summary of our findings and provide full details in the SM.

Clark and Linzer Replication
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Clark and Linzer (2015) weigh in on the debate between using unit intercepts (i.e., fixed

effects) or random unit intercepts (random effects) to address the issue of time-invariant

unobservable individual effects in panel data. As the authors state, random effects tend

to have a lower variance than fixed effects, but with the strong assumption that, “the

random-effects estimator requires there to be no correlation between the covariate of in-

terest, x, and the unit effects” (p. 402). Clark and Linzer use RMSE as a measure of es-

timator performance across a range of values for J (number of units) and n (number of

within-unit observations) common in the social sciences using the following DGP:

yi = αj[i] + βxi + ϵi, ϵi ∼ N(0, σ2
y ), β = 1 (9)

xi ∼ N(x̄j, σ2
x) (10)

where,

αj

x̄j

 ∼ MVN


0

0


1 ρ

ρ 1


 (11)

where, αj are the unit intercepts and xi are within-unit values of the independent variable

drawn from a normal distribution with unit-mean x̄j and variance σ2
x . ϵi is an i.i.d. error

term with mean 0 and variance σ2
y . The within-unit means x̄j, and unit intercepts αj,

are drawn from a multivariate normal (MVN) distribution with mean zero, variance of

one, and covariance between x̄j and αj, equal to ρ (ρ = 0, 0.1, 0.2 · · · , 0.9, 0.95). Across

these conditions, they compare the relative performances for the following three models:

feasible generalized least squares random effects (FGLS-RE), ordinary least squares with

fixed effects (OLS-FE), and ordinary least squares with no adjustments for the nature of

the data (OLS-pooled).

Clark and Linzer find that when within-unit variation is small (σy = 1 and σx = 0.2

in their simulations), when the number of within-unit observations (n) is small, and the

amount of correlation between the unit intercepts and independent variable (ρ) is low,

the RMSE of the FGLS-RE estimator is lower than that of the OLS-FE estimator. That is to
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say, even though the assumption underlying random effects has been violated, the gain in

efficiency still outweighs the increase in bias. The authors thus conclude that we should

prefer random effects over fixed effects under these conditions. However, as ρ increases,

the random effects estimator performs much worse than the fixed effects estimator in

terms of RMSE.

While using RMSE is a good way to examine both bias and efficiency in a single statis-

tic, we argue that using a single statistic to evaluate performance between estimators is

at best somewhat limited, and at worst potentially misleading as to the best model under

particular circumstances. To demonstrate this, we replicate Clark and Linzer’s “sluggish”

Monte Carlo example, in which x has low within-unit variance (σ2
x = 0.2).18 Using the

variables (αj and x̄j) from Equation 11, we then generated the dependent variable y for

unit j at a given within-unit observation i, from Equations (9) and (10). Following the pro-

cedure of the authors, we simulated 2000 datasets across values of ρ, while J = 10, 40, 100,

and n = 5, 20, 50 were varied. We then estimate OLS-pooled, OLS-FE, and FGLS-RE mod-

els.

In accordance with our recommendations in Figure 3, we begin by evaluating the es-

timators using RMSE, coverage probability, and power. Figure 4 shows the RMSE results

for β̂ from the simulations. These results are identical to Figure 2 in Clark and Linzer

(p. 406). As is clear from the figure, the OLS-FE estimator (the blue solid line) is able

to produce an RMSE that remains constant as ρ—the correlation between the unit inter-

cepts and x̄j—varies. In contrast, higher levels of ρ tend to increase the RMSE for both

the FGLS-RE (the red dashed line) and the OLS-pooled (purple dotted line) estimators.

Despite this, when n = 5, both the pooled and random effects models tend to outperform

the fixed effects estimator when ρ is low. The same holds for random effects, but not the

pooled model, when J = 10; if ρ is low enough, the random effects estimator performs as

18We also calculate our recommended performance statistics when σx = 1, what Clark

and Linzer call the standard case, in the SM. Our overall conclusions remain the same.
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Figure 4: RMSE of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).
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well, or better than, the fixed effects estimator. It is only when J and n become large (n in

particular) that the fixed effects estimator always outperforms the other two estimators.

Thus, were we to only rely on Figure 4, we would reach the same conclusions as Clark

and Linzer, namely that when within-unit variation in x is small, there are conditions un-

der which the random effects estimator may be preferred to fixed effects, even when the

assumptions underlying the former are violated (when ρ is small but not zero) and n is

small.
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Figure 5: Coverage probability of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).

In Figure 5, we show the coverage probability statistics of the estimators (i.e., how

often the 95 percent confidence intervals include the DGP value of β = 1). Across all

21

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The Journal of Politics, published by The University of Chicago Press on behalf of Southern Political Science Association. Include the DOI 

when citing or quoting: https://doi.org/10.1086/726934. Copyright 2023 Southern Political Science Association.



levels of ρ, the coverage probability of the fixed effects estimator remains constant at

.95. Coverage for the random effects estimator is only that high when ρ = 0. When

the correlation between the unit effects and the independent variable is non-zero, the

random effects model has a lower coverage probability (increased Type 1 error); in fact,

at high levels of ρ, the coverage probability of the random effects estimator approaches

zero. It should also be noted that, across the board, the pooled model performs worse on

coverage probability than the fixed effects estimator and worse or as bad as the random

effects estimator.
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Figure 6: Power of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).
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In Figure 6 we consider the power of the estimators; i.e., how often do they (correctly)

reject the false null that β = 0? For the most part, all three estimators have enough power

to reject the null hypothesis when J is greater than 40 and n is greater than 20. However,

when n and J are small, the power of the fixed effects estimator is substantially lower

than that of the random effects or pooled estimators. This means that the fixed effects

estimator will often fail to reject the false null hypothesis (increased Type 2 error) when

presented with smaller samples, thus leading to incorrect hypothesis-testing inferences.
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Figure 7: Bias of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).

As noted in Figure 3, RMSE, coverage probability, and power merely evaluate esti-
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mators’ performances with respect to point estimates and inferences, but do not provide

any information about the reasons behind such performance. To diagnose such perfor-

mance, we recommend that researchers calculate bias and SD to diagnose sources of the

average error in the model, and bias, SD, and overconfidence to diagnose sources of poor

coverage probability and power. In Figure 7, we show the bias of each estimator for the

same simulations. These results demonstrate that, as expected, at any level of correlation

between x̄j and αj (ρ), the fixed effects estimator is either very slightly biased or unbiased

and performs similarly or better than the pooled and random effects estimators. Together

with the results in Figure 4, this implies that the fixed effects estimator’s RMSE is largely

influenced by SD. The pooled and random effects estimators are always biased for any

non-zero value of ρ and this bias increases as the value of ρ increases. Only when ρ = 0

and there are 10 unit and 5 within-unit observations do the pooled and random effects

estimators perform better than fixed effects, and only by a small amount. For any non-

zero ρ, random effects always performs better than the pooled model. Overall, in terms

of bias, the fixed effects estimator performs best when taking into consideration the range

of values of J, n, and ρ selected by Clark and Linzer.

Figure 8 shows the standard deviations from the three models. From this figure, we

can see that the efficiency gains from the random effects estimator are greatest when n and

J are very small (top left panel in Figure 8). These relative gains in efficiency decrease as

both J and n increase, and the standard deviations of the fixed effects and random effects

estimators are very similar at n = 50. The pooled estimator almost always has a lower SD

than the fixed effects estimator for n < 50 and the standard deviation of the pooled esti-

mator converges to that of the random effects estimator as both J and ρ increase. When

comparing Figures 7 and 8 we find support for Clark and Linzer’s theoretical claim that,

under certain conditions, the efficiency gains from the pooled and random effects esti-

mators outweigh their increased bias to produce RMSEs that are lower than those of the

fixed effects estimator.
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Figure 8: Standard deviation of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).
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Figure 9: Overconfidence of β̂, Clark and Linzer’s sluggish case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line =
OLS-pooled model, the horizontal axis in each plot is the value of correlation between x̄j
and αj (ρ).
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Following our advice in Figure 3, in order to determine why the fixed effects estimator

performs well and the pooled and random effects estimators perform poorly in terms of

coverage probability, we must analyze overconfidence in addition to bias and SD. Figure

9 demonstrates whether the estimators’ standard errors are accurate. As we discussed in

Section , this is an assessment of whether the overconfidence measure differs from one.

From Figure 9 we can see that across the board, the pooled estimator is overconfident.

When combined with the bias that we see in Figure 7, this overconfidence in the pooled

estimator results in smaller confidence intervals that are less likely to encompass the true

β, resulting in poor coverage probability and increased Type 1 errors. When n < 20, we

can see that the poor coverage probability of the random effects estimator is mainly a

function of bias. However, when n ≥ 20 and ρ > 0.4, the random effects estimator’s poor

coverage probability is a result of both its bias and overconfidence. The random effects

estimator only recovers accurate estimates of the standard deviation when J > 10 and n =

5 or at low levels of ρ when J > 10 and n > 5. These results combined with the random

effects estimator’s low bias at low values of ρ result in a high coverage probability at these

values of ρ. And, when J > 10 and n = 5 across high levels of ρ, poor coverage probability

is largely a result of increasing bias. The fixed effects estimator, overall, always recovers

accurate estimates of the standard deviation of the sampling distribution. Thus, even

though the fixed effects estimator has a relatively larger SD, its good coverage probability

occurs because it is unbiased and recovers accurate estimates of the standard deviation of

the sampling distribution.

By comparing Figures 6 and 8, we can see that the panels in which the fixed effects

estimator has low power are also the panels in which the fixed effects estimator has large

SD values.19 And, since we know from Figure 9 that the fixed effects estimator recovers

accurate standard errors across the board, the fixed effects estimator has large confidence

19These large SD values are due to the constrained variance analyzed by this estimator

which only leverages within-unit variation.

27

This is the author's accepted manuscript without copyediting, formatting, or final corrections. It will be published in its final form in an upcoming issue of 
The Journal of Politics, published by The University of Chicago Press on behalf of Southern Political Science Association. Include the DOI 

when citing or quoting: https://doi.org/10.1086/726934. Copyright 2023 Southern Political Science Association.



intervals due to its SD, making it more likely the estimator encompasses the parameter

value specified in the false null hypothesis. For the pooled and random effects estimators,

their bias, low SD values, and underestimated standard errors result in smaller confidence

intervals that are unlikely to encompass 0, the false null hypothesis. This results in high

power. When J = 10 and n = 5, the pooled and random effects estimators have power

less than 1. This is because at ρ = 0, when both the pooled and random effects estimators

are unbiased, the lower power is likely to be due to the small sample size.20 And, as ρ

increases, these sample size issues are masked by increasing bias which moves estimates

away from zero making the rejection of the false null hypothesis more likely.

There are several conclusions to draw from our replication and extension of Clark and

Linzer’s findings to include measures of bias, standard deviation, power, coverage prob-

ability, and overconfidence. First, we are able to exactly replicate their analyses of RMSE.

Second, from an analysis of bias and SD, in line with Clark and Linzer’s theoretical ex-

pectations, we find that the fixed effects estimator’s relative inefficiency contributes to its

RMSE and that the bias of the pooled and random effects estimators makes a relatively

larger contribution to their RMSE values. Third, the good coverage probability of the

fixed effects estimator is because of its unbiasedness and ability to recover accurate stan-

dard errors, despite having a relatively larger SD. The poor coverage probability of the

pooled and random effects estimators are because of their bias and overconfidence. Last,

all three estimators perform well on power. The main exception to this is for the fixed

effects estimator at low values of J and n. It is worth noting, however, that sometimes the

random effects and pooled models perform well on power only because of their sizable

bias.

Clark and Linzer (2015, p.407) write in their conclusion that “Examining the RMSE

of both estimators, however, we demonstrate that there is a range of conditions under

which it may be worth accepting the bias in the random-effects model if it is associated

20See the SM for an in-depth discussion of how power is determined.
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with a sufficient gain in efficiency, leading to estimates that are closer, on average, to the

true value in any particular sample.” While we agree with this conclusion in terms of

considerations of point estimates only, most researchers are also interested in hypothesis-

testing inferences. When we diagnose performances on inference, we reach dramatically

different conclusions. This is the case because we find that the fixed effects estimator

substantially outperforms its rivals on coverage probability. To prefer the random effects

estimator, an applied researcher interested in inference would have to have a small num-

ber of observations per unit and put a very high premium on Type 2 error (power) over

Type 1 error (coverage probability) and SD over bias, or be extremely confident that ρ = 0

(though, outside of simulated data scenarios, ρ is unknowable).21

Summary of replications of Wilkins (2018) and Hanmer and Kalkan (2013)

In this section, we provide a brief overview of what we found in our replications and

extensions of Wilkins (2018) and Hanmer and Kalkan (2013). In our SM we provide a full

discussion and results from these two replications.

Using a DGP in which the autoregression in the error term varies between 0 and 0.5,

Wilkins (2018) compares the percent bias and average error (RMSE) in the short-run effect

of the independent variable of four time series models: EQ4 (an ADL(2,1) specification),

LGDV (a lagged dependent variable model), LGDV2 (a lagged dependent variable model

with two lags of the DV), and a static model.22 From his results using only percent bias

and RMSE, Wilkins concludes that LGDV is the preferred model at low levels of auto-

correlation and EQ4 is the preferred model at higher levels of autocorrelation. From our

extension of his analysis, we come to fairly different conclusions.

21It is worth noting, however, that from a time series perspective Clark and Linzer’s

DGPs are all static. A recent article by Plümper and Troeger (2019) demonstrates that

some fixed effects estimators can lead to substantial problems if the underlying dynamics

have been misspecified.
22We omit the results from the static model due to its extremely poor performance.
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From the evaluation stage, we find that EQ4 has the highest RMSE at low levels of

autocorrelation (less than 0.3). When there is no autocorrelation, all models have the ex-

pected value of coverage probability (0.95). However, as the amount of autocorrelation

increases, the coverage probability of the LGDV and LGDV2 models decreases while that

of EQ4 remains around 0.95. All models have high power. From our diagnoses, we find

that the higher RMSE values of EQ4 at low levels of autocorrelation (less than 0.3) are be-

cause of its higher SD and that the higher RMSE values of the LGDV and LGDV2 model at

higher levels of autocorrelation (above 0.3) are mainly because of its bias, which is not off-

set by its lower SD. EQ4’s expected coverage probabilities are a result of its unbiasedness

and ability to recover accurate standard errors, despite having a relatively high SD. The

lower coverage probabilities for the LGDV and LGDV2 models are due to a combination

of bias and overconfidence. The high power for the LGDV and LGDV2 models are a result

of their overconfidence, despite being biased towards the false null hypothesis (β = 0).

Overall, we come to a more nuanced conclusion than that of Wilkins: in terms of point

estimates, the LGDV and LGDV2 models are preferred at low levels of autocorrelation

and EQ4 is almost always preferred in terms of inference.

Hanmer and Kalkan (2013) compare the performances of the average marginal effects

(AME) and marginal effects at means (MEM) approaches for probit models in the pres-

ence of omitted variables.23 They compare these marginal effects when one covariate is

excluded to those when the model is correctly specified, and find that the AME approach

is preferred because of its unbiasedness.24 In evaluating these two approaches, our results

23Both AME and MEM approaches have been used to obtain what is a typical effect of a

shift in an independent variable on predicted probabilities from probit and logit models.

Although they can be thought of as different quantities of inference for users of such mod-

els, the goal of the authors is to compare the performance of these two rival estimators of

typical effects and their sensitivity to omitted variable bias.
24In this paragraph, we only discuss the replication of Model 1, Panel A, Table 1 in
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demonstrate that the AME approach has lower RMSE values, close-to-expected coverage

probability, and a power of 1. The MEM approach, on the other hand, has a low coverage

probability and a power of 1. In diagnosing these performances, we find that the lower

RSME values of the AME approach are due to a combination of its unbiasedness and

lower SD. The AME approach recovers close-to-expected levels of coverage probability

because, while both approaches perform similarly in recovering accurate standard errors

(overconfidence close to 1), the AME approach is unbiased. The low coverage probability

of the MEM approach, despite its higher SD, is because of its bias, which also contributes

to its high power. Across the board, the AME approach is preferred.

Authors Original Replication and extension
Clark and Linzer (2015) Performance statistics: R Performance statistics: R C P B S O

Conclusions: When the correlation Conclusions: Different sample sizes and levels
between unit effects and the of correlation influence whether FE or RE
predictor, within-unit variation, performs better in terms of point estimates,
and the number of within-unit but the FE estimator always performs better
observations are all low, RMSE for inference unless the correlation between
demonstrates the RE estimator is unit effects and the predictor is 0.
better than the FE estimator.

Wilkins (2018) Performance statistics: B R Performance statistics: R C P B S O
Conclusions: When both the Conclusions: The LGDV and LGDV2 models
dependent and independent perform better for point estimates at low
variables are highly levels of autocorrelation, and EQ4 at higher
autoregressive, the EQ4 model levels. With regards to inference, EQ4 almost
has lower bias. At higher levels always performs best.
of serial autocorrelation, the
EQ4 model performs better in
terms of RMSE.

Hanmer and Kalkan (2013) Performance statistics: B Performance statistics: R C P B S O
Conclusions: The AME approach is Conclusions: For the covered circumstances,
preferable to the MEM approach the AME approach is always preferred.
because it produces less biased
marginal effects estimates when
relevant variables are omitted.

Table 2: Summary of our replications and extensions

Note: The letters indicate which performance statistics were reported in the original study
and in our replication. R–RMSE, C–coverage probability, P–power, B–bias, S–SD, O–
overconfidence.

In Table 2, we summarize the results of all three replications and extensions. In the

case of both Clark and Linzer (2015) and Wilkins (2018), we find that our conclusions

Hanmer and Kalkan (2013). The entire replication is provided in the SM.
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differ substantially from those of the original studies. In the case of Hanmer and Kalkan

(2013), we arrive at the same conclusion as the original study but demonstrate that their

conclusions are robust to our recommended considerations of estimator quality.

Conclusion
Articles that report the results of Monte Carlo experiments play an important role in Po-

litical Science. They disperse knowledge about new statistical techniques and estimator

properties, and serve as references for scholars interested in using these estimators to

test their theoretical expectations. Given that a substantial amount of research in Politi-

cal Science is shaped by such recommendations, these decisions should be based on the

most important dimensions of estimator performance. Reasonable people can, of course,

disagree about the relative importance of different performance statistics.

As we mention in the introduction, our paper is designed to help two audiences.

For those who produce Monte Carlo simulations, we offer guidance about which per-

formance statistics to report. We identify patterns in what gets reported (as well as what

does not) and show how combining statistics can improve analysis. For those who read

Monte Carlo work, we provide a useful overview of the six most common performance

statistics in order to help readers think critically and systematically about the results from

these simulations.

With this in mind, we present a new way to think about the advantages of the different

performance statistics, both independently and in combination. For the purposes of eval-

uating point estimates, we encourage comparing performances by examining the RMSE.

For the purposes of evaluating inference, we encourage comparing performances in terms

of coverage probability and power. We believe these three performance statistics—RMSE,

coverage probability, and power—are of most interest to researchers interested in know-

ing which method to use because they provide information about the average error of

a method as well as the ability to make accurate hypothesis-testing inferences. We also

recommend that researchers who want to diagnose the source of performances (good or
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bad) use combinations of bias, SD, and overconfidence.
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Appendix A. Measures of Overconfidence

Our equation for calculating overconfidence is the same equation as used by Franzese
and Hays (2007, p. 154), except that we have flipped the numerator and denominator (we
did this because larger values representing greater overconfidence seems more intuitive).
In this way, our equation is similar to Beck and Katz (1995), although our equation is
different from theirs. If the two equations are put in the same notation, here’s how they
compare:

Beck and Katz (1995): !Overconfidence(θ̂) =

!
1
n ∑n

i=1(θ̂i − ¯̂θi)2

!
1
n ∑n

i=1 s.e.(θ̂2
i )

(1)

Us: !Overconfidence(θ̂) =

!
1
n ∑n

i=1(θ̂i − ¯̂θi)2

1
n ∑n

i=1 s.e.(θ̂i)
(2)

While the numerators are identical, the denominators are not. Consequently, we are
comparing the standard deviation of θ (the numerator) to the average calculated standard
error for θ (the denominator), while Beck and Katz (1995) are comparing the standard de-
viation of θ to the square root of the average squared standard error (i.e., estimated vari-
ance). We believe that the correct comparison is to the average standard error (as is done
in our measure), while taking the square root of the average estimated variance, as Beck
and Katz do, is not the same thing. Since Beck and Katz square all of the standard errors,
take the average, and then the square root, the resulting value is larger than the average
of the original set of standard errors. As a consequence the Beck and Katz measure of
overconfidence is deflated. We think that it is also likely that as the standard deviation
of the SEs increases, the absolute difference between the average SE on one hand and the
square root of the average squared SE on the other increases.

To better see this, we conducted a Monte Carlo experiment with the following DGP:

yi = βxi + εi, where εi ∼ N(0, σ2) (3)

Where we set β = 2, varied σ2, the number of observations in the DGP (N) and the
number of Monte Carlo simulations, n. We obtained β̂ as well as its standard error across
the n simulations, and calculated each overconfidence measure. Table 1 shows our results,
as well as the calculated average standard error, the standard deviation of the n standard
errors, the average of β̂ and the standard deviation of the β̂’s. Overconfidence measures
should show any discrepancies between the average standard error and the standard
deviation of the estimates themselves; if the average standard error is larger (smaller)
than the standard deviation of the β̂’s, this means that the standard errors are too wide
(small), and thus underconfident (overconfident). While both our measure and Beck and
Katz’s are often close, they are not always the same. Moreover, there are times in which
the Beck and Katz measure gets over/under-confidence wrong. Consider the case where
N = 100, n = 100, 000 and σ2 = 1; the average SE from these simulations is 0.1009591,
which is smaller than the SD of the estimates, 0.10133717. While our measure of 100.37
correctly concludes that the standard errors are overconfident (i.e., ¯S.E. <SD of β̂), the
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Beck and Katz measure of 99.86 would lead us to incorrectly conclude that the standard
errors were too large.

N n σ2 ¯S.E. SD of SE’s ¯̂β SD of β̂’s O/U Conf? Beck-Katz Ours
100 100 1 0.1012794 0.01032475 2.006 0.09812674 U 95.90936 96.40148

100 1000 1 0.1011460 0.01032285 2.004 0.10091640 U 99.20827 99.72310

100 100000 1 0.1009591 0.01023502 1.999 0.10133717 O 99.86214 100.37399

100 100 10 1.0083532 0.09781574 2.043 1.17172661 O 115.08472 115.61954

100 1000 10 0.9991330 0.10115902 1.985 0.98883985 U 98.41765 98.92030

100 100000 10 1.0104994 0.10214676 1.998 1.01539605 O 99.97460 100.48408

25 100 10 2.0783445 0.39428782 1.877 2.35406058 O 110.74272 112.69839

25 1000 10 2.0755450 0.43711981 1.850 2.19089345 O 103.24217 105.50471

25 100000 10 2.0831946 0.44559429 2.007 2.13951190 O 100.43110 102.70290

Table 1: Overconfidence Monte Carlo results

Note: U = underconfident, ¯S.E. >SD of β̂. O = overconfident, ¯S.E. <SD of β̂
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Appendix B. Coverage, Power, and Hypothesis Test Specifi-
cation

As we discuss in the paper, coverage and power performance measures are each partially
determined by a series of test specification choices made by the researcher. These include
the specification of a null hypothesis, alternative hypothesis, and significance level. Here
we provide some further details on the relationship between coverage, power, and hy-
pothesis test specification.

A consistent estimator is defined as one for which, as the sample size tends to infinity,
the estimate converges on the true parameter value and its variance approaches 0. The
coverage probability of a consistent estimator depends on the sample size and the signif-
icance level (e.g. 1%, 5%, 10%). In finite samples, the expected coverage probabilities for
the 10%, 5%, and 1% significance levels are 0.90, 0.95, and 0.99 respectively.

The power of a consistent estimator depends on the null hypothesis, sample size, and
significance level (Greene, 2017). For instance, if the null hypothesis is θ = 2 and the true
parameter value is 2.1, it is likely the estimator will be unable to reject the null hypothesis
in finite samples. However, as we mention above, as the sample size approaches infinity,
the estimate converges to the true parameter value (assuming the estimator is consistent)
and its variance approaches 0. Thus, the power will approach 1; the estimator will reject
the false null hypothesis every time. Lastly, the power of an estimator depends on the
significance level of the test. For example, while an estimator may reject the null hypoth-
esis at the 10% significance level, it may fail to do so at the 5% significance level. While
the researcher may choose to report power across all three common significance levels
(1%, 5%, 10%), we recommend that the researcher at the very least report power at the 5%
significance level since it is the conventional level of hypothesis testing.
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Appendix C. Other Performance Statistics and the Full Pat-
tern of Reporting

In order to assess the degree to which our recommended performance statistics are cur-
rently being used by political science researchers in their Monte Carlo simulations, we
had two research assistants each code every published article in the American Journal of
Political Science, the American Political Science Review, the Journal of Politics, Political Anal-
ysis, and Political Science Research and Methods from 2006 to 2016 that contained the key-
words “Monte Carlo” and/or “simulation.”1 As Figure 1 shows, a search for these terms
identified a total of 540 articles. From this initial set of articles, we identified 71 in which
the results from a Monte Carlo simulation were reported in the published article.2 As
detailed in Section 4 of the manuscript, we found that measures of bias are most com-
monly reported, followed by MSE/RMSE. In descending order of frequency, we found
that coverage, standard deviation, overconfidence, and power are least reported.

Search “Monte Carlo” OR 
“simulation” in APSR, AJPS, JOP, 

PA, PSRM (2006-2016)

Identify if Monte Carlo simulation 
conducted (and presented in article 

manuscript/appendix)

540 articles

71 articles

Number of articles presenting the 
following quantity of interest:

Bias Coverage PowerStd. Dev. RMSE/
MSE

61 32 142621

Overcon
fidence

17

Figure 1: Summary of our literature coding

In Table 1 in the main text we presented patterns of performance statistics, reporting
only the patterns that were used by more than 4.2% of studies for brevity. In Table 2 in
this document we show the full pattern of reporting.

1Since publication of Political Science Research and Methods began in 2013, we coded 2013-2016 for that
journal.

2We coded all Monte Carlo simulations that were presented as a part of published papers and in ap-
pendices that appeared as a part of the volume in which they were published. We did not code the use of
Monte Carlo simulations that only appeared in supplemental materials made available online.
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In addition to examining the use of our recommended performance statistics as shown
in Table 2, we also assessed the degree to which other performance statistics were used.
We found two other commonly used performance statistics: percentile range and density
plots.

• Percentile Range: Percentile range constitutes the lower and upper bounds of a
quantity of interest for a given confidence level. For example, the 95% percentile
range of a parameter estimate is the 2.5% and 97.5% percentiles of the distribution
of estimates from repeated sampling. In other words, percentile range is the con-
fidence interval for the quantity of interest. It is an alternative to SD and is more
appropriate when the sampling distribution is asymmetric. 18.31% of the surveyed
articles that conducted Monte Carlo experiments reported percentile range. Per-
centile range can also be calculated for a performance statistic—for example, the
confidence intervals around the bias in the parameter estimate.3

• Density Plots: 23.94% of the surveyed articles that conducted Monte Carlo exper-
iments presented density plots of the estimates of their quantities of interest from
repeated sampling. If properly labelled, these plots can provide information about
the bias and efficiency (SD) for the quantity of interest.

3We also note that Monte Carlo statistics themselves have uncertainty surrounding the presented quan-
tity of interest (Boos and Osborne, 2015). This is known as “Monte Carlo error”, which is the “standard
deviation of the estimated quantity over repeated simulation studies (Gasparini, 2018, p. 1). Although
rarely presented in studies, they can be easily calculated for the quantities of interest we discuss in both R

(Gasparini, 2018) and Stata (White, 2010).
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Appendix D. Clark and Linzer (2015) Standard Case Repli-
cation

In the main text, we replicated Clark and Linzer’s (2015) analysis for the sluggish case—
i.e., when the within-unit variation of the predictor is 0.2. In this section, we replicate
Clark and Linzer (2015) and calculate our recommended performance statistics for the
standard case—when the within-unit variation of the predictor is 1.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
10 units,  5 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
10 units,  20 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
10 units,  50 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
40 units,  5 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
40 units,  20 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
40 units,  50 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
100 units,  5 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
100 units,  20 observations per unit

ρ

R
M
SE

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
100 units,  50 observations per unit

ρ

R
M
SE

Figure 2: RMSE of β̂, Clark and Linzer’s standard case

Notes: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model,
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).

To evaluate the estimators’ performance in terms of point estimates and inferences,
we first calculated RMSE, coverage, and power. In figure 2, we present the RMSEs for the
pooled-OLS, fixed effects, and random effects estimators for different combinations of the
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number of units (J) and the number of within-unit observations (n). Overall, similar to
Clark and Linzer (2015), we find that for all combinations of J and n, the fixed effects
estimator has the lowest RMSE. More specifically, the fixed effects and random effects
estimators perform similarly in scenarios in which the correlation between the unit effects
and predictor (ρ) is low and/or n ≥ 20. In all other scenarios, the fixed effects estimator
performs the best.
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Figure 3: Coverage of β̂, Clark and Linzer’s standard case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model,
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).

In terms of coverage, as shown in Figure 3, only for low values of ρ do the fixed and
random effects estimator perform similarly under most combinations of J and n, and the
pooled-OLS estimator always performs worse. At higher values of ρ, the coverage of the
fixed effects estimator is always better than that of the random effects estimator. Thus,
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Figure 4: Power of β̂, Clark and Linzer’s standard case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model,
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).
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the fixed effects estimator performs best overall. In terms of power, the pooled-OLS,
fixed effects, and random effects estimators, all have a power of 1 under all combinations
of J, n, and ρ (Figure 4). They always reject the false null hypothesis that the predictor has
no effect on the outcome.
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Figure 5: Bias of β̂, Clark and Linzer’s standard case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model,
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).

To diagnose the estimators’ performances in terms of RMSE, coverage, and power, we
calculate bias, SD, and overconfidence. Looking at both the bias and SD of the estimators
in Figures 5 and 6 provides information about the individual contributions of bias and
efficiency to the average error (RMSE). We find that the reason behind the higher RMSE
of the random effects estimator at n ≤ 20 and high ρ is mainly because of its bias. The
random effects estimator is only slightly more efficient (lower SD) than the fixed effects
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Figure 6: Standard deviation of β̂, Clark and Linzer’s standard case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model,
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).
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estimator at J ≤ 40, n = 5, and small ρ. Thus, although the fixed estimator is theorized
to be inefficient and the random effects estimator is theorized to be biased, we provide a
more nuanced conclusion than Clark and Linzer by demonstrating that in the standard
case, the fixed estimator is as efficient as the random effects estimator and that the low
RMSE of the random effects estimator is due to bias.
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Figure 7: Overconfidence of β̂, Clark and Linzer’s standard case

Note: Solid line = OLS-fixed effects, dashed line = FGLS-random effects, dotted line = OLS-pooled model
the horizontal axis in each plot is the value of correlation between x̄j and αj (ρ).

In addition to bias and SD, calculating overconfidence provides a more comprehensive
understanding of the coverage and power of the three estimators. In figure 7, we present
the results for overconfidence. For all combinations of J and n, the fixed effects estima-
tor recovers close-to-accurate estimates of the standard deviation, meaning that its high
coverage is because of its unbiasedness, its low SD, and its ability to recover accurate
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standard errors. Pooled-OLS is always overconfident and underestimates the standard
deviation of the effect of the predictor on the outcome (β), implying that its poor cover-
age is largely due to a combination of its bias and overconfidence. The random effects
estimator performs worse than the fixed effects estimator when n = 5 and J < 100, and
also at high levels of ρ when n < 50 due to a combination of its bias and overconfidence.
When n = 50, its lower than expected coverage is due to its slight bias. The high power
of the random effects estimator (when n = 50) and the fixed effects estimator (across the
board) results from their unbiasedness, efficiency, and accurate standard errors. The ran-
dom effects estimator’s bias only slightly contributes to its power when n = 5 or when
n = 20 and ρ ≥ 0.5. The pooled-OLS estimator’s power is always a function of its biased-
ness and underestimated/overconfident standard errors.

Based on the results of Figure 2, Clark and Linzer (2015) (p. 404) concluded that “Re-
searchers should feel secure using either fixed- or random-effects models under standard
conditions, as dictated by the practical and theoretical aspects of a given application.”
However, when calculating our recommended performance statistics, our results demon-
strate that even under standard conditions, the fixed effects estimator should almost al-
ways be preferred. While both estimators often have similar RMSE and power, the fixed
effects estimator performs significantly better than the random effects estimator in terms
of bias, overconfidence, and coverage, and therefore Type 1 errors.
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Appendix E. Wilkins (2018) Replication

Wilkins (2018) weighs in on the highly-cited debate between Achen (2000) and Keele and
Kelly (2006) about the use of lagged dependent variables (which Wilkins abbreviates as
“LGDVs”) in time series models. He starts with the same DGP as the other authors:

Yt = αYt−1 + βXt + ut (4)

Xt = ρXt−1 + e1t (5)

ut = φut−1 + e2t (6)

where e1t and e2t are independent and identically distributed stochastic terms that con-
form to the usual OLS assumptions about error terms. Wilkins points out that researchers
have typically estimated Equation 4. He shows that a transformation of this model is
equivalent to an Autoregressive Distributed Lag (ADL) of order (2,1) (p. 395),4

EQ4: Yt = (α + φ)Yt−1 + (−αφ)Yt−2 + βXt + (−βφ)Xt−1 + e2t (7)

which Wilkins calls Equation 4 (EQ4). He argues that excluding Yt−2 and Xt−1 from the
model when estimating Equation 4 results in omitted variable bias because Yt−1 and Xt
will be correlated with ut, which leads to a biased coefficient on Xt. Wilkins uses Monte
Carlo analyses to compare the performance of EQ4 with two typically estimated time
series models which he labels as “LGDV” and “LGDV2” specified as

LGDV: Yt = αYt−1 + βXt + ut

LGDV2: Yt = α1Yt−1 + α2Yt−2 + βXt + ut

We replicate Wilkins’ Monte Carlo experiments which he displays in Figures 1(c) and
1(d) on p. 398.5 Following Wilkins, we set the parameters in the DGP (Equations 4 to
6) such that β = 0.5, ρ = 0.95, and α = 0.75, while allowing φ, the coefficient of au-
tocorrelation between ut and ut−1 to vary between 0 and 0.5. For each of the resulting
scenarios, we also perform 1000 simulations for time series with 100 observations. In ad-
dition to replicating the performance of these estimators in terms of bias and RMSE for β,
we extend Wilkins’ analysis by assessing these estimators’ performance in terms of SD,
overconfidence, power, and coverage.6

The results from this replication and extension of Wilkins’ experiment are displayed
in Figure 8. In evaluating the performances of the three models in terms of the short-run
effect (β), based on the RMSE results, we find that the LGDV and LGDV2 models perform

4Wilkins uses standard time series notation for the order of an ADL model in which the first number is
the number of lags of the dependent variable and the second number is the number of lags in the indepen-
dent variable.

5We omit reporting results from the “REG” model—Yt = βXt + ut—because it performs drastically
worse than the EQ4, LGDV, and LGDV2 models under all scenarios for the given set of parameter values.

6Wilkins reports percent bias which is calculated as E(β̂)−β
β × 100. This measure is different from the

more common measure of bias that we present in Equation 1 in the manuscript, in that it is scaled relative
to β.
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Figure 8: MC performance statistics of Wilkins’ Figures 1c and 1d

Note: Solid line = EQ4, dashed line = LGDV, dash/dot line = LGDV2
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best in terms of RMSE at low levels of serial autocorrelation (φ ≤ 0.3) and EQ4 performs
best when φ ≥ 0.4. The results for coverage, in the top-right panel of Figure 8 provide ad-
ditional evidence in favor of the EQ4 estimator for β. Only up to φ = 0.1 are the coverage
statistics of the estimators similar across models.7 For values of φ > 0.1, the confidence
intervals of the LGDV and LGDV2 models fail to encompass the true parameter, β, 95% of
the time, and this worsens for increasing values of φ. This implies the LGDV and LGDV2
models are prone to Type 1 errors. In contrast, the coverage statistic for β from estimating
EQ4 is around 0.95 and rises slightly as φ increases. But overwhelmingly, the coverage
is flat across values of φ. Thus, the confidence intervals of β̂ from EQ4, encompass the
true parameter a little over 95% of the time. From the middle-left panel in Figure 8, it is
apparent that the estimators of β in all three models have very high power, between 0.99
and 1, across all levels of serial autocorrelation.

In diagnosing the resulting RMSE values, we find that the variation in RMSE between
the three models is due to a bias-SD tradeoff. Across all simulated values of φ, EQ4 is
the least efficient but unbiased and the bias in the LGDV and LGDV2 models are not
offset by their efficiency gains at higher levels of φ, which result in higher RMSE values
than EQ4. The good coverage of EQ 4—despite having the highest SD—is becuase it is
unbiased and recovers accurate standard errors (overconfidence of 1) across all values
of φ. When φ > 0.1, the LGDV and LGDV2 models are biased and overconfident, thus
resulting in poor coverage or increased Type 1 errors. The high power of the LGDV and
LGDV2 models are a result of their low standard deviation and underestimated standard
errors, which offset their (negative) biasedness towards 0.

By examining only percent bias and RMSE—the performance statistics reported by
Wilkins—one would conclude in favor of the LGDV model when φ ≤ 0.3 because of its
low RMSE and in favor of EQ4 when φ > 0.3. However, when looking at coverage, EQ4
performs best as φ increases. A similar conclusion holds true in terms of the accuracy
of the models’ standard errors. Although each performance measure provides important
information, because of EQ4’s ability to to cover the true effect of the independent vari-
able on the dependent variable (low Type 1 errors), we conclude in favor of EQ4. Such a
conclusion would not have been reached if one were to merely look at the performance
statistics—percent bias and RMSE—reported by Wilkins. Thus, even for low values of φ
(e.g., φ ≤ 0.3), EQ4 is the best performing model.

7The coverage statistics reported here are for 95% confidence levels.
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Appendix F. Hanmer and Kalkan (2013) Replication

Hanmer and Kalkan (2013) use Monte Carlo analyses to help make their case for calculat-
ing marginal effects from binary-outcome models using an average marginal effect (AME)
approach instead of a marginal effects at means (MEM) approach. In the MEM approach,
researchers construct a hypothetical observation with mean values for all independent
variables and then calculate the impact of a shift in a single independent variable, xk, on
that hypothetical observation such that

MEM = f (x̄xxβ)βk.

In contrast, the AME approach advocated by Hanmer and Kalkan involves calculating
the marginal effect of a shift in a single independent variable, xk, for each observation
in the sample at its observed values for all independent variable values, xxxiβ, and then
averaging over these marginal effects,

AME =
1
n

n

∑
i=1

f (xxxiβ)βk.

To demonstrate the relative utility of these two approaches, Hanmer and Kalkan gen-
erate binary-outcome data using the following DGP:

y∗ = 2 +−1x1 + 1x2 + 0.5x3 + e

where, y = 1 if y∗ > 0 and y = 0 if y∗ ≤ 0. x1 takes on the values 1, 2, or 3 and is created
from a uniform distribution that is divided into three equally probable categories. x2 and
x3 are drawn from standard normal distributions and can have a 0, 0.5, or 0.8 correlation
with each other. They then estimate four probit models: 1) y is regressed on x1, x2, and x3
in the True Model; 2) y is regressed only on x2 and x3 in Model 1; 3) y is regressed only on
x1 and x3 in Model 2; and, 4) y is regressed only on x1 and x2 in Model 3. They calculate
bias in both the MEM and AME for each of the latter three models by subtracting these
estimated effects from their values in the true model. Across the board, they find that the
bias of the estimated MEM marginal effects are greater than those of the estimated AME
effects.

We expand their analysis to include RMSE, coverage, and power, to evaluate the es-
timators’ performances, and standard deviation and overconfidence to diagnose those
performances. We replicate Panel A of Table 1 (p. 274) when the correlations between
x2 and x3 are 0, 0.5, and 0.8. Following the lead of Hanmer and Kalkan (2013), we also
conduct 1000 simulations for a sample size equal to 1000.

Our results for Model 1—when y is regressed only on x2 and x3—are presented in
Table 3. By analyzing only the bias in marginal effects across all models, Hanmer and
Kalkan find that the AME approach recovers unbiased estimates of the coefficients of x2
and x3, when x1 is omitted. This, however, leaves the reader uncertain as to whether the
AME approach has lower RMSE and higher coverage and power, and whether it is also
more efficient and recovers accurate standard errors.
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Model 1: Model 1: Model 1:
Excludes x1 Excludes x1 Excludes x1

Cor(x2, x3) = 0 Cor(x2, x3) = 0.5 Cor(x2, x3) = 0.8
MEM AME MEM AME MEM AME

True Marginal Effects Values
x2 0.401 0.231 0.401 0.214 0.401 0.206
x3 0.201 0.116 0.201 0.107 0.201 0.103

Root Mean Squared Error
x2 0.099 0.007 0.098 0.008 0.099 0.011
x3 0.050 0.007 0.050 0.008 0.051 0.011

Coverage
x2 0 0.993 0.002 0.997 0.084 0.998
x3 0.157 0.999 0.376 0.999 0.778 0.999

Power
x2 1 1 1 1 1 1
x3 1 1 1 1 1 1

Bias
x2 −0.098 0.000 −0.097 0.000 −0.096 0.000
x3 −0.049 0.000 −0.048 0.000 −0.048 0.000

Standard Deviation
x2 0.020 0.011 0.024 0.013 0.033 0.020
x3 0.019 0.013 0.023 0.015 0.032 0.021

Overconfidence
x2 0.963 0.995 0.977 1.017 0.981 0.997
x3 1.027 1.038 1.033 1.037 1.012 1.012

Table 3: MC Performance Statistics of Hanmer and Kalkan’s Table 1, Panel A.

Note: Coverage probabilities are calculated for the 95% confidence level.
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Table 3 demonstrates that that the RMSE values of the AME approach are substan-
tially smaller than those from the MEM approach. Under all reported scenarios of omit-
ted variables and various Cor(x2, x3), the MEM approach has poor coverage. That is, the
estimated marginal effect only rarely encompasses the true marginal effect at the means,
increasing Type 1 errors. The AME approach, on the other hand, has coverage values
greater than 0.95 for a 95% constructed confidence interval. Both marginal effects ap-
proaches have a power of 1 for any level of correlation between x2 and x3. In other words,
both approaches perform equally well with respect to Type 2 errors.

To diagnose the performances of these approaches on RMSE, coverage, and power,
we calculate bias, SD, and overconfidence. From the bias and standard deviation values,
we can infer that the MEM approach’s high RMSE is due to both its bias and inefficiency,
and that the AME approach’s (lower) RMSE values are due to its (lower) standard devia-
tion values and the fact that it is unbiased. From the overconfidence results, we see that,
although the AME approach is more efficient than the MEM approach, both approaches
perform similarly in recovering accurate standard errors: they either slightly underesti-
mate (overconfident) or overestimate (underconfident) the standard errors. This tells us
that the poor coverage or higher Type 1 errors exhibited by the MEM approach are due to
its bias and SD, and that bias and overconfidence contribute to the MEM approach’s high
power.

Although our replication of Model 1, Panel A, Table 1 (Hanmer and Kalkan, 2013)
reaches a similar conclusion as that of the authors—the AME approach is superior to the
MEM approach—our approach demonstrates that the superiority of the AME approach
across the scenarios examined is comprehensive by providing two new findings. First, the
AME approach has fewer Type 1 errors because it is both less biased and more efficient
than the MEM approach. Second, the AME approach has a lower RMSE because it is
both less biased and more efficient than the MEM approach. We also find that the AME
and MEM approaches perform equally well with respect to Type 2 errors under our test
procedure (power). Our replication and extension demonstrates the robustness of the
AME approach by extending the analyses from merely reporting bias, to finding that
the AME approach performs substantially better in terms of coverage, RMSE, and SD.
However, this is not true for power, a performance statistic in which the AME approach
is as robust as the MEM approach.

It is important to note that in Model 1—when x1 is excluded—x1 is not correlated with
x2 or x3, and thus the consequences of omitted variable bias should ideally not appear in
the marginal effects calculations for x2 and x3. Despite this, the MEM approach performs
poorly. In Tables 4 and 5, we replicate the rest of Panel A, Table 1 in Hanmer and Kalkan
(2013) by calculating our recommended performance statistics, and thus probe the ro-
bustness of the AME approach when a relevant variable (x2 or x3) is omitted from the
model. As per Hanmer and Kalkan (2013), the correlation between x2 and x3 is either
0, 0.5, or 0.8. In evaluating the approaches based on these simulations, we find that, for
any level of correlation, when either x2 or x3 is excluded, the AME approach has a lower
RMSE than the MEM approach. In terms of coverage, the AME approach performs well,
and better than the MEM approach, when the correlation between x2 and x3 is 0. For any
non-zero correlation between x2 and x3, both approaches have a coverage of zero. Fur-
ther, both approaches have a power of 1 for any level of correlation between x2 and x3.
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Model 2: Model 2: Model 2:
Excludes x2 Excludes x2 Excludes x2

Cor(x2, x3) = 0 Cor(x2, x3) = 0.5 Cor(x2, x3) = 0.8
MEM AME MEM AME MEM AME

True Marginal Effects Values
x2 0.401 0.231 0.401 0.214 0.401 0.206
x3 0.201 0.116 0.201 0.107 0.201 0.103

Root Mean Squared Error
x2 – – – – – –
x3 0.061 0.008 0.102 0.107 0.246 0.165

Coverage
x2 – – – – – –
x3 0.029 0.999 0 0 0 0

Power
x2 – – – – – –
x3 1 1 1 1 1 1 1

Bias
x2 – – – – – –
x3 −0.060 0.000 0.101 0.106 0.245 0.164

Standard Deviation
x2 – – – – – –
x3 0.018 0.014 0.021 0.011 0.027 0.010

Overconfidence
x2 – – – – – –
x3 1.012 1.026 0.983 1.007 0.991 1.134

Table 4: MC Performance Statistics of Hanmer and Kalkan’s Table 1, Panel A, when ex-
cluding x2.

Note: Coverage probabilities are calculated for the 95% confidence level.
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Thus the consequences of omitted variable bias manifest clearly when examining cover-
age, which demonstrates that both approaches perform poorly in terms of Type 1 errors.
In diagnosing the performances of the two approaches, we find that he lower RMSE of
the AME approach is because it is less biased and more efficient than the MEM approach.
For the AME approach, despite being more efficient than the MEM approach, its poor
coverage is also a consequence of its overconfidence, especially when x3 is excluded from
the model (Table 5). Although the authors claim that the AME approach is more robust
under conditions of omitted variable bias (p. 273), we reach a more nuanced conclusion.
Overall, while the AME approach is still the preferred approach, we find that the AME
approach will always reject the null hypothesis when it is true. In other words, in the face
of omitted variable bias as created in these scenarios, both the AME and MEM approaches
will always incorrectly reject the true null hypothesis. To conclude, the consequences of
omitted variable bias are manifested as low coverage, and thus increased Type 1 errors
for both the AME and MEM approaches. However, the AME still does better in terms of
bias, efficiency, and RMSE. The AME and MEM approaches perform similarly in terms of
power.
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Model 3: Model 3: Model 3:
Excludes x3 Excludes x3 Excludes x3

Cor(x2, x3) = 0 Cor(x2, x3) = 0.5 Cor(x2, x3) = 0.8
MEM AME MEM AME MEM AME

True Marginal Effects Values
x2 0.401 0.231 0.401 0.214 0.401 0.206
x3 0.201 0.116 0.201 0.107 0.201 0.103

Root Mean Squared Error
x2 0.045 0.005 0.059 0.054 0.138 0.084
x3 – – – – – –

Coverage
x2 0 1 0 0 0 0
x3 – – – – – –

Power
x2 1 1 1 1 1 1
x3 – – – – – –

Bias
x2 −0.043 0.000 0.058 0.054 0.136 0.082
x3 – – – – – –

Standard Deviation
x2 0.024 0.010 0.029 0.010 0.033 0.010
x3 – – – – – –

Overconfidence
x2 1.008 1.053 1.011 1.196 1.012 1.314
x3 – – – – – –

Table 5: MC Performance Statistics of Hanmer and Kalkan’s Table 1, Panel A, when ex-
cluding x3.

Note: Coverage probabilities are calculated for the 95% confidence level.
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