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1 Alternative Visualizations of the Relationship Be-

tween Women’s Representation and Expenditures

In the subsections below, we show several alternative depictions of our results from the

main paper.

1.1 ICE Plots

In the main paper we used partial dependence plots (PDPs) to show the average expected

value of expenditures, given a particular value of women’s representation in the legisla-

ture, averaging over the values of all the other predictors in the model. A critique of this

is that by only looking at averages, we might be overlooking underlying heterogeneity in

the effects of women’s representation for particular observations. A way around this is to

show individual conditional expectation (ICE) plots, which show the predictions for each

observation across the percentage of women in the legislature. These are shown in Figure

1. The PDP is simply the average of the ICE lines at a particular value of percent women

in the legislature, and is shown by a red line in Figure 1. As is clear from the figure, al-

though there definitely is some heterogeneity in the effects, a vast majority of cases exhibit

the same relationship as that shown by the PDP (albeit with much different starting inter-

cepts).

1.2 Local Dependence and ALE Plots

PDPs and ICE plots reveal the globalized effects of the % women in the legislature on gov-

ernment spending. We explore the localized effects of women’s representation on govern-

ment expenditures in two ways: by using local dependence (LD) as well as accumulated lo-

cal effects (ALE) plots (Apley and Zhu 2016). One issue with PDPs and ICE plots is that

they use the entire marginal distribution of all other predictors. Thus, there runs a risk of

making predictions for a given value of women’s representation for which there exist ‘un-
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Figure 1: ICE Plots for Each Expenditure

2.5

5.0

7.5

0 20 40 60
% Women in Legislature

P
re

di
ct

ed
 V

al
ue

Education

4

8

12

16

0 20 40 60
% Women in Legislature

P
re

di
ct

ed
 V

al
ue

Health

0

5

10

0 20 40 60
% Women in Legislature

P
re

di
ct

ed
 V

al
ue

Defense

realistic’ combinations of the other predictors Local dependence plots. Both LD and ALE

plots “zoom in” by focusing on the conditional distribution of the predictors (other than

percent women in the legislature, which is the subject of interest here). LD plots show ex-

pected values of the dependent variable over the conditional distribution. In other words,

for a given value of women’s representation, only values of other predictors “near” that

value are used to make predictions. Because the estimates are not continuous across levels

of women’s representation, typically, a smoothed estimate is used (Biecek 2018).

Similar to LD, ALE plots also use the conditional distribution of other predictors, xc,

as opposed to the entire marginal distribution, as is the case with PDPs and ICE plots.

ALE plots take all of the observations in a particular k region, fits them with the value of

xc at the lower break point, and then refits these observations with the value of xc at the

upper break point. The big difference is that ALE plots “accumulate” these local effects,

which avoids an issue—present in LD, PDP and ICE plots—whereby omitted variables

correlated with the percent women in the legislature may bias predictions (really, we end

up attributing changes due to these omitted variables as being caused by women’s repre-

sentation). These changes in predictions are plotted, creating an “accumulation” of local

gradients in the equation to create a single plot.

In Figures 2, 3 and 4, we show the predicted values of education, health and defense,
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respectively, across levels of women’s representation in the legislature. Both the local de-

pendence (dashed line) and accumulated local effects (dotted) predictions are shown, as

well as the original partial dependence predictions (solid line) for reference.1 Across all

models the ALE and PDP lines show the same effect across time; in the case of defense

spending in Figure 4, the predictions are nearly identical. The LD predictions appear to

be slightly more different than the other two. While large jumps in predictions appear to

occur at the same time—see for instance at 22 percent and about 36 percent of women

legislators in Figure 2—predictions for the LD tend to have a much wider range than for

the ALE or PDP predictions. One explanation for this is that the LD may be picking up

the effect of omitted variables (Biecek 2018). Still, the predictions across the three ap-

proaches have the same trajectory, even if the actual predictions differ based on assump-

tions about local versus global dependence.

2 Linear Regression Results

In the main paper we used an ensemble-based machine learning approach to exploring the

relationship between women’s representation in government and expenditure outcomes.

In this section we estimate several models using OLS to test the robustness of our overall

findings:

• OLS: linear regression (only regressor is % women in the legislature)

• OLS-FE: linear regression with country intercepts

• OLS-LDV: linear regression with a lagged dependent variable

• OLS-2FE: linear regression with country and year intercepts

• OLS (full): same as “OLS”, but including the 34 other predictors used in the Ran-

dom Forest analysis.2
1This was done using the DALEX package (Biecek 2018).
2Recall these were: population density, total population, % of labor force that is female, % of pop-
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Figure 2: Alternative Dependence Plots for Education
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Figure 3: Alternative Dependence Plots for Health
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Figure 4: Alternative Dependence Plots for Defense
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• OLS-FE (full): same as “OLS-FE”, but including the 34 other predictors used in the

Random Forest analysis.

• OLS-LDV (full): same as “OLS-LDV”, but including the 34 other predictors used in

the Random Forest analysis.

• OLS-2FE (full): same as “OLS-2FE”, but including the 34 other predictors used in

the Random Forest analysis.

The results for education, health, and defense spending are shown in Figures 5, 6,

and 7, respectively. It is clear that, across most model specifications, the direction of the

coefficients are nearly always in the same direction as what we found using the machine

learning approach in the main paper. Often, the coefficients are statistically significant,

even though (1). since this is linear regression, we are assuming a linear relationship be-

tween women’s representation and expenditures, which was exactly the assumption we

seek to relax using the Random Forest approach in the main paper, and (2). in the “full”

models, there are 34 other predictors included, sharply increasing multicollinearity.3

3 Robustness of the Nonlinear Relationships: Alter-

native Modeling Strategies

Below, we present the results from four alternative modeling strategies to Random Forests:

a piecewise regression, a generalized additive model (GAM), A cubic polynomial, and a

neural network. Each are described below.
ulation that is female, Polity, anemia prevalence among women, female labor force participation rate,
imports, GDP per capita, male labor force participation rate, age dependency ratio, % rural population,
trade, % school enrollment, lifetime maternal mortality risk, female life expectancy, employment to popu-
lation ratio, year, male life expectancy, population growth, maternal mortality rate, unemployment rate,
unemployment rate among males, fertility rate, % of GDP from agriculture, de facto threshold, FDI, in-
flation, birth rate, quota strength (1), implemented quota, GDP growth, quota strength (2), implemented
quota, quota shock.

3As evidence of this, the average variance inflation factor for a given variable using the “OLS” models
are 56 (education), 51 (health), and 51 (defense).
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Figure 5: OLS Robustness Results for Education

% Women in Legislature
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Note: Coefficient estimates with 95% confidence intervals shown. Model details described in text.

A piecewise regression is an approach to ‘break’ a single regression line into multiple

segments. For our purposes, we can allow the relationship between women’s representa-

tion and expenditures to have breakpoints; while the relationship between breakpoints is

linear, looking across the entire range of women’s representation allows us to model a po-

tentially non-linear relationship. Rather than specifying a priori where the breakpoints

lie, we used the segmented package in R to (Muggeo et al. 2008), which uses an iterative

procedure to automatically determine where the breakpoints are. We specified two break-

points; more breakpoints would better model potential non-linearities, at the risk of over-

fitting the data.

A GAM is a flexible approach to modeling potentially non-linear relationships by es-

timating a sum of smoothed functions of a variable (typically some form of spline), plus

including a standard linear effect. GAMs also typically trade off complexity versus simplic-

ity by adding a penalization term to the loss function. We used the mgcv package (Wood
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Figure 6: OLS Robustness Results for Health

% Women in Legislature
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Note: Coefficient estimates with 95% confidence intervals shown. Model details described in text.

2018). Because this model—and all others discussed in this section—include all predic-

tors (unlike Random Forests, in which it is entirely possible a predictor never appears in a

given tree), we face a trade-off between assuming all relationships are linear (i.e., estimat-

ing a linear model) and assuming that all covariates have a non-linear relationship with

the dependent variable, the latter of which would be heavily parameterized. As a compro-

mise, in addition to allowing the percent of women’s representation in the legislature to

take on a smoothed functional form, we also include the top ten other most important pre-

dictors (as determined by the variable importance plots in the main manuscript). Thus

our model is:

Expenditure Categoryit = β0 + f (Xit)+γZ+ εit (1)

Where f (Xit) are the additive function of inputs of the top ten most important variables,
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Figure 7: OLS Robustness Results for Defense

% Women in Legislature
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Note: Coefficient estimates with 95% confidence intervals shown. Model details described in text.

plus the women’s representation variable, and Z are all other covariates that enter into the

model linearly. For a basis function (required for estimating f (Xit)) we chose the default

thin-plate regression spline. Smoothing parameters were chosen using generalized cross-

validation. We let the model automatically choose the dimension of the basis for each vari-

able in f (Xit), the exception being the variable “Quota Strength 2”, which has only six

unique values, so we restricted that dimension to a maximum of three.

The cubic polynomial is perhaps the simplest approach, since it just involves adding

cubed and squared terms of women’s representation to the moodel:

Expenditure Categoryit = β0 +β1%Women in Legislatureit +β2%Women in Legislature2
it+

β3%Women in Legislature3
it +γControlsit + εit

(2)
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We then plotted the predicted value of each expenditure category using this model, set-

ting all covariates to their means (or modes if dichotomous) across the plausible range of

women’s representation.

Neural networks start with a set of inputs (our list of covariates), pass them through

one or more “hidden layers” each of which contain several neurons, which are then used

to weight the inputs in order to maximize predictive ability of the output (our expendi-

ture dependent variables). Typically—as in our model—backpropogation is used, which

feeds errors back into the hidden layer in order to augment the weights to improve predic-

tions. We estimated a relatively simple neural net using the neuralnet package (Günther

and Fritsch 2010), which consisted of a single hidden layer with 17 neurons.4 As is stan-

dard, we ensure all predictors are scaled before estimation (Hastie, Tibshirani and Fried-

man 2009). We used the default threshold of 0.01 as the stopping criteria for the partial

derivatives of the error function, specified a learning rate for the backpropogated errors of

0.01, and used resilient backpropogation with weight backtracking (also the default).

Figure 8 shows the predictions for each model across levels of women’s representa-

tion while holding all other covariates at their means, with the exception of the neural net,

which uses partial dependence similar to the Random Forest plots described above. The

results differ slightly since these are all heavily parameterized models; however, the es-

timates for education and health spending continue to suggest a nonlinear relationship,

while the estimated effect for defense spending appears to be roughly linear. All three

plots show effects similar to those produced by the Random Forest partial dependence

plots, although the predictions for healthcare spending using a GAM are the most dissimi-

lar.
4How many neurons to include is often a trial and error task; we used one rule-of-thumb that

the number of hidden neurons should be about two-thirds of the total number of predictors (c.f.,
https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-
in-a-feedforward-neural-netw. We relied on the NeuralNetworkVisualization package for creating the
partial dependence plots (Seufert and Afanasev N.d.).
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Figure 8: Predicted Values of Expenditures, Alternative Model Specifications
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4 Re-Creating the Main Analysis Including Left Gov-

ernment

In this section, we re-run the main analysis including a dichotomous variable equal to one

if the largest governing party in the legislature is left-leaning. We created this dummy

variable from a categorical variable in the Database on Political Institutions that identifies

the largest seat share in the legislature as left, center or right leaning. We did not include

this variable in the main results due to a large loss (up to 39 percent) of data. We do not

find any significant differences in results with the inclusion of this variable. The first three

plots—9, 10, and 11—show the most important variables for each of the spending out-

comes. Note that the left government variable is called “Largest Government Party” in

the figures. The VIP plots indicate that whether or not the largest government party in

the legislature is leftist or not does not appear to be of high importance for predicting

government expenditures. More importantly, the position of % women in the legislator

either does not change in its position of importance for the variable importance plots or

changes slightly in position. For education expenditures, women’s representation remains

the third most important variable. In the main analysis, women’s representation is the

eighth most important variable in the model. When we add the largest governing party

variable to the model, women’s representation is the seventh most important variable. For

defense spending, women’s representation goes from being the tenth most important vari-

able in the main analysis to eighth most important in the analysis that includes the largest

governing party measure.

The partial dependence plots shown in Figure 12 are also generated with data includ-

ing the largest government party variable. They appear to be nearly identical to those in

the main paper.

As with the PDPs, we see no changes in the interaction plots when we include the

largest government party variable as a predictor. These are shown in Figures 13, 14 and
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Figure 9: VIP for Education Including Left Government
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Figure 10: VIP for Health Including Left Government

0

10

20

30

%
 F

em
al

e 
P

op
ul

at
io

n
To

ta
l P

op
ul

at
io

n
P

op
ul

at
io

n 
D

en
si

ty
%

 R
ur

al
 P

op
ul

at
io

n
Tr

ad
e

Fe
m

al
e 

Li
fe

 E
xp

ec
ta

nc
y

A
ge

 D
ep

en
de

nc
y 

R
at

io
%

 W
om

en
 in

 L
eg

is
la

tu
re

Im
po

rt
s

A
ne

m
ia

 P
re

va
le

nc
e 

(%
 o

f W
om

en
)

M
al

e 
La

bo
r 

Fo
rc

e 
P

ar
tic

ip
at

io
n 

R
at

e
%

 S
ch

oo
l E

nr
ol

lm
en

t
%

 L
ab

or
 F

or
ce

 F
em

al
e

G
D

P
 P

er
 C

ap
ita

In
fla

tio
n

M
al

e 
Li

fe
 E

xp
ec

ta
nc

y
U

ne
m

pl
oy

m
en

t R
at

e
Ye

ar
%

 o
f G

D
P

 fr
om

 A
gr

ic
ul

tu
re

E
m

pl
oy

m
en

t t
o 

P
op

ul
at

io
n 

R
at

io

Fe
m

al
e 

La
bo

r 
Fo

rc
e 

P
ar

tic
ip

at
io

n 
R

at
e

F
D

I
P

op
ul

at
io

n 
G

ro
w

th
G

D
P

 G
ro

w
th

P
ol

ity
Fe

rt
ili

ty
 R

at
e

M
al

e 
U

ne
m

pl
oy

m
en

t (
%

)
M

at
er

na
l M

or
ta

lit
y 

R
at

io
D

e 
Fa

ct
o 

T
hr

es
ho

ld

M
at

er
na

l M
or

ta
lit

y 
R

is
k 

(L
ife

tim
e)

B
irt

h 
R

at
e

Q
uo

ta
 S

tr
en

gt
h 

(1
)

Q
uo

ta
 S

tr
en

gt
h 

(2
)

Im
pl

em
en

te
d 

Q
uo

ta
Q

uo
ta

 S
ho

ck

%
 In

cr
ea

se
 in

 M
S

E

Health

15



Figure 11: VIP for Defense Including Left Government
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Figure 12: PDP for All Outcomes including Including Left Government
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15.

5 A Re-Analysis Changing the Marginal Distribution

in Regards to Quotas

As discussed in the main paper, partial dependence plots work by holding all Xc control

variables at their observed values for each observation, setting the covariate of interest

(percent women in the legislature, x*, in most of our applications) to a fixed value for all

observations, obtaining predictions and then averaging over all predictions to obtain the

partial dependence plot. While this approach—which is very similar to the observed-value

approach (Hanmer and Ozan Kalkan 2013)—is much less sensitive to doing something like

fixing Xc to single values (e.g., means or modes), it can lead to instances where parts of

the marginal distribution of Xc for a certain value of x* are never actually observed in the

data. This is more of an interpolation issue than an extrapolation one (King and Zeng

2006)—to be clear, our PDPs are not extrapolating outside of the convex hull for the vari-

ables of interest (e.g., percent women in the legislature). Still, we know that for the five

quota variables we include as controls in our models, there may be implausible combina-

tions of these marginal distributions and x*. For example, we might be averaging over

countries with a 25% quota in order to calculate the predicted value given 1% women in

the legislature.

Does this affect our results? We argue that it will not for three reasons. First, even if

such imbalances do occur in the data, there are many trees for which percent women will

be included while these quota variables will not (or vice-versa). Second, our accumulated

local effects plots above support our PDP findings, even though the ‘zoom in’ on more lo-

calized effects rather than the entire marginal distribution. Third, the literature on gender

quotas finds that loopholes in quota legislation, lax enforcement, and incompatibility with

the electoral system causes many countries to fall short of meeting the minimum threshold
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Figure 13: Interactions Between Percent Women and Democracy, Including Left
Government
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Figure 14: Interactions Between Percent Women and Year, Including Left Government
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Figure 15: Interactions Between Percent Women Legislators and Quota Implementation,
Including Left Government
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specified by the quota law. For instance, in our data, approximately 56% of cases fall short

of meeting their gender quota, 17% meet the quota (within ±1 percentage point), and

27% exceed the quota threshold. This is shown visually in Figure R1 below. The figure

presents a scatterplot of the percent women legislators plotted against the quota thresh-

old. (Country-years that lack quotas are omitted from the figure.) If the percent women

legislators matches the quota threshold, the dot will fall along the diagonal line. If the per-

cent women legislators is less than the quota threshold, the dot will fall below the diagonal

line (as is most common). And if the percent women legislators is greater than the quota

threshold, the dot will fall above the diagonal line. As demonstrated in the figure, the per-

cent women legislators is frequently lower than the quota threshold. Thus, combinations

such as 2.5% women legislators and a 20% quota (as occurred in Paraguay 1998-2002) or

9% women legislators and a 50% quota (DRC in 2012-2015) can exist in the real world.

We also have reasons to expect that quota laws can have effects on government spend-

ing that are independent of their effects on the percent women legislators. In other words,

quota laws do not only operate through their impact on the percent women legislators

(i.e., co-creating the effects), but can also have independent effects on government spend-

20



Figure 16: Percent women legislators plotted against the quota threshold

ing (Clayton and Zetterberg 2018). For example, gender quotas might be part of the gov-

ernment’s larger commitment to representing women’s substantive interests. Thus, we

would expect quota laws to be correlated with both the percent women legislators and

government spending on policy issues important to women—hence their inclusion as a con-

trol variable in order to isolate the independent effects of women legislators on government

spending.

Controlling for the effects of quotas is also important, as there are questions about

whether women who are elected through a quota, so-called “quota women,” are able to

effectively perform their legislative duties or whether they are marginalized in legislative

institutions (Franceschet and Piscopo 2008; Zetterberg 2008). While quotas might increase

the percent women elected, they could also inhibit women’s ability to influence legislative

outcomes if their fellow legislators do not view them as equals. In this case, the “origin”

of women’s representation (elected via a quota or not) could, in fact, affect their ability to

shape government spending. Our covariates control for the presence of a quota law, as well

as the strength of the quota law (e.g., presence of placement mandates, strong enforcement
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mechanisms, and a high threshold) to account for the possible direct and indirect effects

quotas might have on government spending.

Even though there are reasons to think that imbalance will have little effect on our

substantive predictions given the discussion above, we still wanted to test the robustness

of our results to this. As shown in in Figures 17 through 22, which replicate the partial

dependence plots shown in Figures 3 through 6 in the main paper, the results are nearly

identical when dropping these five quota variables.

Figure 17: VIP for Education (Excluding Quota Variables)
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Figure 18: VIP for Health (Excluding Quota Variables)
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Figure 19: VIP for Defense (Excluding Quota Variables)
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Figure 20: PDPs (Excluding Quota Variables)
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Figure 21: Interactions Between Percent Women and Democracy (Excluding Quota
Variables)
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Figure 22: Interactions Between Percent Women and Year (Excluding Quota Variables)
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6 Machine Learning-Informed Parametric Testing

Researchers who are testing hypotheses about possible non-linear relationships may wish

to include measures of uncertainty, such as confidence intervals, in their analysis. Since

machine learning models, like the Random Forest models used in our study, do not provide

measures of uncertainty, we present an approach to specifying parametric models based on

the results of non-parametric models and accompanying plots. To illustrate this approach,

we use our model for education spending. We recommend referencing our companion do-

file called “guide for machine learning-informed parametric testing.do” for a step-by-step

guide with annotated code.

Step 1: Create knots based on partial dependence plot results us-

ing linear spline approach

If we take an exclusively parametric approach to estimating models with non-linear re-

lationships, then we need to explicitly specify those knots or breakpoints. The machine

learning-based methods discussed in the main body of this paper present a data-driven

way to examine possible non-linear relationships. We recommend that users identify break-

points or shifts in the nature of the relationship between the dependent variable and a

given explanatory variable using partial dependence plots (see Figure 4 in the main text

for an example).5

Based on PDP results for our education spending model, we find evidence of two crit-

ical mass intervals in the percentage of women: 20-21% and 38-41%. In order to avoid

an overly complex parametric model specification, we create knots at the middle points

for each of these intervals: 20.5% and 39.5%. We use the mkspline command in Stata

to create two knots at 20.5% and 39.5% women in the legislature, which in turn gener-

ates three variables that will replace the original xpct.w in our parametric model. The first
5Users could also use ICE or ALE plots, but we think PDPs are the simplest to interpret for the pur-

pose of identifying inflection points.
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variable contains all values below the first breakpoint, the second includes values equal to

and between both breakpoints, and the third includes all values of xpct.w above the second

breakpoint. For further detail about this step, see the companion do-file.

Step 2: Select top control variables based on results from the vari-

able importance plot

Unlike parametric models, non-parametric ones, such as Random Forests, do not have de-

grees of freedom constraints. Consequently, we were able to include control variables with-

out regard for their number. Of course, this is not the case with parametric models, like

the one we estimate below. In order to narrow down the number of covariates, we recom-

mend selecting a subset of variables based on the variable importance plots (see Figure

3a in the main file). For this example, we select the 11 predictors (in addition to the per-

centage of women in the legislature) which do the best job at reducing prediction error

compared to their randomly permuted counterparts.

Step 3: Estimate parametric model with explanatory variable in

original form (eg. % women in parliament)

Users should estimate the parametric model that is best suited for their data. For our

panel data, we started by estimating a fixed effects model with year dummies. As dis-

played in Table 1, the positive and statistically significant coefficient on the percentage of

women in the legislature tells us that as the number of women in the legislature increases,

so do the percentage that governments spend on education. Of course, these results do not

tell us whether or not a non-linear relationship is at play, such as a critical mass effect. In

Step 4, we show how to directly test for a non-linear relationship using parametric model-

ing.
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Step 4: Estimate model with explanatory variable using linear

splines (eg. % women < 20.5, 20.5 <= % women <= 39.5, % women

> 39.5)

In order to assess the presence of non-linear dynamics, we test the relationship between

the percentage of women in the legislature and education spending as a piecewise linear

function using linear splines. Users can do this by substituting in the variables created

in Step 1 for the original percentage of women variable in your model specification. Re-

call that based on the results we observed in the PDP for percent women and education

spending, we expect that women’s representation will only have a substantive effect on ed-

ucation spending between the range of 20.5% and 39.5% women in the legislature. If the

coefficient on wom2 is positive and statistically significant and wom1 and wom3 are not

statistically significant, then this would suggest that there is non-linear effect—the per-

centage of women in the legislature only matters for how governments spend on education

when the percentage of women in the legislature is between 20.5% and 39.5%. As shown

in Table 1, we find evidence of a critical mass interval effect that is statistically significant,

allowing for the inclusion of measures of uncertainty in our analysis of the non-linear rela-

tionship between women’s representation and education spending.

Step 5: Test equivalency of breakpoint slopes to evaluate differ-

ences in breakpoints

In order to directly assess the presence of non-linear effects, we recommend that users test

the equivalency of the slopes for each breakpoint region.6 For our example, we use the

test command in Stata, which is a post-estimation hypothesis test. With it, we perform
6For users interested in plotting the main effect of their model with linear splines to assess presence of

non-linear effects, see (Royston 2013) and (Rios-Avila 2021).
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a test that the difference between the two coefficients is equal to 0.7 As shown in Table 1,

we find that the difference in the slopes for the low breakpoint region (below 20.5% women

in the legislature) and the middle breakpoint region (20.5%-39.5% women in the legisla-

ture) are different from one another, providing support for non-linear dynamics between

women’s representation and education spending. We find that the joint test for the dif-

ference between the middle and high (above 39.5% women in the legislature) breakpoint

regions is not statistically significant, therefore, we cannot reject the null hypothesis that

the difference between the slopes is equal to 0. Taken together, a conservative interpreta-

tion of these post-estimation tests is that there is strong support for a critical mass effect

and mixed support for a critical mass interval effect regarding the relationship between

women’s representation and government spending on education.

Step 6: Use information criteria to assess whether piecewise esti-

mator is a better fit given the data compared to model with x in

its original form

Next, we suggest that users assess the relative fit of the piecewise linear function model

given the data compared to the model with women’s representation in its original form

with criterion information statistics. For our example, we use Akaike’s information crite-

rion (AIC).8 The smaller the AIC statistics, the better the relative fit of the model given

the data. Given that we are testing the differences in relative fit based on form of an ex-

planatory variable as apposed to a restricted versus unrestricted model, we expect to ob-

serve somewhat small differences between the test statistics across models. Based on the

AIC statistics shown in Table 1 for the fixed effects model with year dummies, we find

that the model with linear splines is (slightly) the more preferred model. Users might
7There are a number of specification options for the test command. Please reference ‘1parametric

estimate.do” for the code for how we conducted the test.
8Stata users can use the estat summarize code to do this, but there are a number of ways these

statistics can be calculated.
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also consider how the differences in information criterion statistics vary across alterna-

tive model specifications. Across all of model specifications, do the information criterion

statistics tend to be smaller for the linear piecewise function models or the ones with the

original form of the explanatory variable?

Step 7: Specify models using alternative estimators

As a final robustness check, which will be familiar to most users, we recommend alterna-

tive model specifications/estimators in order to see how the results hold or change. As dis-

played in Table 1 we find that our fundamental finding of a critical mass interval effect of

women’s representation on education spending holds across a series of model specifications,

increasing our confidence that a non-linear relationship does indeed exist. Last, we present

results for health spending—-assuming breakpoints at 15% and 30% based on results in

the main paper—in Table 2, and results for defense spending (here, assuming only a single

breakpoint at 30% given our earlier results) in Table 3.
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